Artificial intelligence and radiomics in evaluation of kidney lesions: a comprehensive literature review.

IF 2.6 4区 医学 Q2 UROLOGY & NEPHROLOGY
Matteo Ferro, Felice Crocetto, Biagio Barone, Francesco Del Giudice, Martina Maggi, Giuseppe Lucarelli, Gian Maria Busetto, Riccardo Autorino, Michele Marchioni, Francesco Cantiello, Fabio Crocerossa, Stefano Luzzago, Mattia Piccinelli, Francesco Alessandro Mistretta, Marco Tozzi, Luigi Schips, Ugo Giovanni Falagario, Alessandro Veccia, Mihai Dorin Vartolomei, Gennaro Musi, Ottavio de Cobelli, Emanuele Montanari, Octavian Sabin Tătaru
{"title":"Artificial intelligence and radiomics in evaluation of kidney lesions: a comprehensive literature review.","authors":"Matteo Ferro,&nbsp;Felice Crocetto,&nbsp;Biagio Barone,&nbsp;Francesco Del Giudice,&nbsp;Martina Maggi,&nbsp;Giuseppe Lucarelli,&nbsp;Gian Maria Busetto,&nbsp;Riccardo Autorino,&nbsp;Michele Marchioni,&nbsp;Francesco Cantiello,&nbsp;Fabio Crocerossa,&nbsp;Stefano Luzzago,&nbsp;Mattia Piccinelli,&nbsp;Francesco Alessandro Mistretta,&nbsp;Marco Tozzi,&nbsp;Luigi Schips,&nbsp;Ugo Giovanni Falagario,&nbsp;Alessandro Veccia,&nbsp;Mihai Dorin Vartolomei,&nbsp;Gennaro Musi,&nbsp;Ottavio de Cobelli,&nbsp;Emanuele Montanari,&nbsp;Octavian Sabin Tătaru","doi":"10.1177/17562872231164803","DOIUrl":null,"url":null,"abstract":"<p><p>Radiomics and artificial intelligence (AI) may increase the differentiation of benign from malignant kidney lesions, differentiation of angiomyolipoma (AML) from renal cell carcinoma (RCC), differentiation of oncocytoma from RCC, differentiation of different subtypes of RCC, to predict Fuhrman grade, to predict gene mutation through molecular biomarkers and to predict treatment response in metastatic RCC undergoing immunotherapy. Neural networks analyze imaging data. Statistical, geometrical, textural features derived are giving quantitative data of contour, internal heterogeneity and gray zone features of lesions. A comprehensive literature review was performed, until July 2022. Studies investigating the diagnostic value of radiomics in differentiation of renal lesions, grade prediction, gene alterations, molecular biomarkers and ongoing clinical trials have been analyzed. The application of AI and radiomics could lead to improved sensitivity, specificity, accuracy in detecting and differentiating between renal lesions. Standardization of scanner protocols will improve preoperative differentiation between benign, low-risk cancers and clinically significant renal cancers and holds the premises to enhance the diagnostic ability of imaging tools to characterize renal lesions.</p>","PeriodicalId":23010,"journal":{"name":"Therapeutic Advances in Urology","volume":"15 ","pages":"17562872231164803"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8f/f7/10.1177_17562872231164803.PMC10126666.pdf","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic Advances in Urology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17562872231164803","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 13

Abstract

Radiomics and artificial intelligence (AI) may increase the differentiation of benign from malignant kidney lesions, differentiation of angiomyolipoma (AML) from renal cell carcinoma (RCC), differentiation of oncocytoma from RCC, differentiation of different subtypes of RCC, to predict Fuhrman grade, to predict gene mutation through molecular biomarkers and to predict treatment response in metastatic RCC undergoing immunotherapy. Neural networks analyze imaging data. Statistical, geometrical, textural features derived are giving quantitative data of contour, internal heterogeneity and gray zone features of lesions. A comprehensive literature review was performed, until July 2022. Studies investigating the diagnostic value of radiomics in differentiation of renal lesions, grade prediction, gene alterations, molecular biomarkers and ongoing clinical trials have been analyzed. The application of AI and radiomics could lead to improved sensitivity, specificity, accuracy in detecting and differentiating between renal lesions. Standardization of scanner protocols will improve preoperative differentiation between benign, low-risk cancers and clinically significant renal cancers and holds the premises to enhance the diagnostic ability of imaging tools to characterize renal lesions.

Abstract Image

Abstract Image

Abstract Image

人工智能和放射组学在肾脏病变评估中的应用:综合文献综述。
放射组学和人工智能(AI)可能会增加肾脏良性病变与恶性病变的分化,血管平滑肌脂肪瘤(AML)与肾细胞癌(RCC)的分化,癌细胞瘤与RCC的分化,RCC不同亚型的分化,预测Fuhrman分级,通过分子生物标志物预测基因突变,预测转移性RCC接受免疫治疗的治疗反应。神经网络分析成像数据。统计、几何、纹理特征给出了病灶轮廓、内部异质性和灰色地带特征的定量数据。在2022年7月之前进行了全面的文献综述。研究放射组学在肾脏病变鉴别、分级预测、基因改变、分子生物标志物和正在进行的临床试验中的诊断价值进行了分析。人工智能和放射组学的应用可以提高肾脏病变检测和鉴别的敏感性、特异性和准确性。扫描仪方案的标准化将提高术前良性、低风险癌症与临床显著肾癌的鉴别,并为提高成像工具对肾脏病变特征的诊断能力奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
39
审稿时长
10 weeks
期刊介绍: Therapeutic Advances in Urology delivers the highest quality peer-reviewed articles, reviews, and scholarly comment on pioneering efforts and innovative studies across all areas of urology. The journal has a strong clinical and pharmacological focus and is aimed at clinicians and researchers in urology, providing a forum in print and online for publishing the highest quality articles in this area. The editors welcome articles of current interest across all areas of urology, including treatment of urological disorders, with a focus on emerging pharmacological therapies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信