The Soft Ray-Inspired Robots Actuated by Solid-Liquid Interpenetrating Silicone-Based Dielectric Elastomer Actuator.

IF 6.4 2区 计算机科学 Q1 ROBOTICS
Jiahui Xu, Yiling Dong, Jiang Yang, Ziyin Jiang, Longcheng Tang, Xiangrong Chen, Kun Cao
{"title":"The Soft Ray-Inspired Robots Actuated by Solid-Liquid Interpenetrating Silicone-Based Dielectric Elastomer Actuator.","authors":"Jiahui Xu,&nbsp;Yiling Dong,&nbsp;Jiang Yang,&nbsp;Ziyin Jiang,&nbsp;Longcheng Tang,&nbsp;Xiangrong Chen,&nbsp;Kun Cao","doi":"10.1089/soro.2022.0024","DOIUrl":null,"url":null,"abstract":"<p><p>Dielectric elastomer actuators (DEAs) are widely used in robotics and artificial muscles because of their large energy densities and short response time. In this study, we developed two types of soft ray-inspired robots using solid-liquid interpenetrating silicone-based DEAs, named SIS DEAs. The optimized SIS DEA had an actuation strain of 79.8% at 20.43 kV/mm in a freestanding state, which was used as the muscle of the ray robot. To imitate the swimming behavior of the ray, the effect of the driving frequency on the velocity of the ray robot was explored. The ray robot achieved a maximum swimming rate of 5.7 mm/s when the driving frequency was ∼0.6 Hz. In addition, the steady-state and the transient simulation were carried out to reveal the mechanism of the ray robot's electro-swimming. The results revealed that the actuating deformation of the SIS DEAs caused the electro-deformation of the ray robot, and the periodical electro-deformation generated the high-speed vortex beneath the robot to push the ray robot forward. The high actuation strain in the freestanding state and the shape customizability of the SIS DEAs made it an ideal alternative to muscles for various soft robots.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":"10 2","pages":"354-364"},"PeriodicalIF":6.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2022.0024","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 5

Abstract

Dielectric elastomer actuators (DEAs) are widely used in robotics and artificial muscles because of their large energy densities and short response time. In this study, we developed two types of soft ray-inspired robots using solid-liquid interpenetrating silicone-based DEAs, named SIS DEAs. The optimized SIS DEA had an actuation strain of 79.8% at 20.43 kV/mm in a freestanding state, which was used as the muscle of the ray robot. To imitate the swimming behavior of the ray, the effect of the driving frequency on the velocity of the ray robot was explored. The ray robot achieved a maximum swimming rate of 5.7 mm/s when the driving frequency was ∼0.6 Hz. In addition, the steady-state and the transient simulation were carried out to reveal the mechanism of the ray robot's electro-swimming. The results revealed that the actuating deformation of the SIS DEAs caused the electro-deformation of the ray robot, and the periodical electro-deformation generated the high-speed vortex beneath the robot to push the ray robot forward. The high actuation strain in the freestanding state and the shape customizability of the SIS DEAs made it an ideal alternative to muscles for various soft robots.

固体-液体互穿硅基介电弹性体作动器驱动的软射线机器人。
介电弹性体致动器具有能量密度大、响应时间短等优点,在机器人和人工肌肉领域得到了广泛的应用。在这项研究中,我们开发了两种使用固体-液体互穿硅基dea的软射线启发机器人,命名为SIS dea。在独立状态下,优化后的SIS DEA在20.43 kV/mm下的驱动应变为79.8%,作为射线机器人的肌肉。为了模拟射线的游动行为,研究了驱动频率对射线机器人速度的影响。当驱动频率为~ 0.6 Hz时,射线机器人的最大游动速率为5.7 mm/s。此外,通过稳态和瞬态仿真,揭示了射线机器人电游的机理。结果表明,SIS dea的驱动变形引起射线机器人的电变形,周期性电变形在机器人下方产生高速涡流,推动射线机器人前进。独立状态下的高驱动应变和SIS dea的形状可定制性使其成为各种软机器人肌肉的理想替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soft Robotics
Soft Robotics ROBOTICS-
CiteScore
15.50
自引率
5.10%
发文量
128
期刊介绍: Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made. With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信