{"title":"Whisker Sensing by Force and Moment Measurements at the Whisker Base.","authors":"E L Starostin, V G A Goss, G H M van der Heijden","doi":"10.1089/soro.2021.0085","DOIUrl":null,"url":null,"abstract":"<p><p>We address the theoretical question which forces and moments measured at the base of a whisker (tactile sensor) allow for the prediction of the location in space of the point at which a whisker makes contact with an object. We deal with the general case of three-dimensional deformations as well as with the special case of planar configurations. All deformations are treated as quasi-static, and contact is assumed to be frictionless. We show that the minimum number of independent forces or moments required is three but that conserved quantities of the governing elastic equilibrium equations prevent certain triples from giving a unique solution in the case of contact at any point along the whisker except the tip. The existence of these conserved quantities depends on the material and geometrical properties of the whisker. For whiskers that are tapered and intrinsically curved, there is no obstruction to the prediction of the contact point. We show that the choice of coordinate system (Cartesian or cylindrical) affects the number of suitable triples. Tip and multiple point contact are also briefly discussed. Our results explain recent numerical observations in the literature and offer guidance for the design of robotic tactile sensory devices.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":"10 2","pages":"326-335"},"PeriodicalIF":6.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2021.0085","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We address the theoretical question which forces and moments measured at the base of a whisker (tactile sensor) allow for the prediction of the location in space of the point at which a whisker makes contact with an object. We deal with the general case of three-dimensional deformations as well as with the special case of planar configurations. All deformations are treated as quasi-static, and contact is assumed to be frictionless. We show that the minimum number of independent forces or moments required is three but that conserved quantities of the governing elastic equilibrium equations prevent certain triples from giving a unique solution in the case of contact at any point along the whisker except the tip. The existence of these conserved quantities depends on the material and geometrical properties of the whisker. For whiskers that are tapered and intrinsically curved, there is no obstruction to the prediction of the contact point. We show that the choice of coordinate system (Cartesian or cylindrical) affects the number of suitable triples. Tip and multiple point contact are also briefly discussed. Our results explain recent numerical observations in the literature and offer guidance for the design of robotic tactile sensory devices.
期刊介绍:
Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made.
With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.