Normal-Tension Glaucoma: A Glymphopathy?

IF 3.1 Q1 OPHTHALMOLOGY
Eye and Brain Pub Date : 2023-01-01 DOI:10.2147/EB.S401306
Peter Wostyn, Hanspeter Esriel Killer
{"title":"Normal-Tension Glaucoma: A Glymphopathy?","authors":"Peter Wostyn,&nbsp;Hanspeter Esriel Killer","doi":"10.2147/EB.S401306","DOIUrl":null,"url":null,"abstract":"<p><p>Glaucoma is one of the main causes of irreversible blindness in the world. The most common form, primary open-angle glaucoma, is an optic neuropathy that is characterized by a progressive loss of retinal ganglion cells and their axons, leading to structural changes in the optic nerve head and associated visual field defects. Elevated intraocular pressure remains the most important modifiable risk factor for primary open-angle glaucoma. However, a significant proportion of patients develop glaucomatous damage in the absence of increased intraocular pressure, a condition known as normal-tension glaucoma (NTG). The pathophysiology underlying NTG remains unclear. Several studies have revealed that vascular and cerebrospinal fluid (CSF) factors may play significant roles in the development of NTG. Vascular failure caused by functional or structural abnormalities, and compartmentation of the optic nerve subarachnoid space with disturbed CSF dynamics have been shown to be associated with NTG. In the present article, based on the concept of the glymphatic system and observations in patients with NTG, we hypothesize that failure of fluid transport via the glymphatic pathway in the optic nerve may be involved in the pathogenesis of some if not many cases of NTG. According to this hypothesis, vascular and CSF factors may share reduced glymphatic transport and perivascular waste clearance in the optic nerve as a final common pathway leading to the development of NTG. In addition, we speculate that some cases of NTG may reflect glymphatic dysfunction in natural brain aging and central nervous system diseases, such as Alzheimer's disease. Clearly, further studies are needed to gain additional insight into the relative contribution of these factors and conditions to reduced glymphatic transport in the optic nerve.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"15 ","pages":"37-44"},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a5/aa/eb-15-37.PMC10086217.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eye and Brain","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/EB.S401306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glaucoma is one of the main causes of irreversible blindness in the world. The most common form, primary open-angle glaucoma, is an optic neuropathy that is characterized by a progressive loss of retinal ganglion cells and their axons, leading to structural changes in the optic nerve head and associated visual field defects. Elevated intraocular pressure remains the most important modifiable risk factor for primary open-angle glaucoma. However, a significant proportion of patients develop glaucomatous damage in the absence of increased intraocular pressure, a condition known as normal-tension glaucoma (NTG). The pathophysiology underlying NTG remains unclear. Several studies have revealed that vascular and cerebrospinal fluid (CSF) factors may play significant roles in the development of NTG. Vascular failure caused by functional or structural abnormalities, and compartmentation of the optic nerve subarachnoid space with disturbed CSF dynamics have been shown to be associated with NTG. In the present article, based on the concept of the glymphatic system and observations in patients with NTG, we hypothesize that failure of fluid transport via the glymphatic pathway in the optic nerve may be involved in the pathogenesis of some if not many cases of NTG. According to this hypothesis, vascular and CSF factors may share reduced glymphatic transport and perivascular waste clearance in the optic nerve as a final common pathway leading to the development of NTG. In addition, we speculate that some cases of NTG may reflect glymphatic dysfunction in natural brain aging and central nervous system diseases, such as Alzheimer's disease. Clearly, further studies are needed to gain additional insight into the relative contribution of these factors and conditions to reduced glymphatic transport in the optic nerve.

Abstract Image

Abstract Image

正常眼压型青光眼:淋巴病变?
青光眼是世界上造成不可逆失明的主要原因之一。最常见的形式是原发性开角型青光眼,是一种视神经病变,其特征是视网膜神经节细胞及其轴突的进行性丧失,导致视神经头的结构改变和相关的视野缺陷。眼压升高仍然是原发性开角型青光眼最重要的可改变的危险因素。然而,相当比例的患者在眼压不升高的情况下发生青光眼损害,这种情况被称为正常张力青光眼(NTG)。NTG的病理生理机制尚不清楚。一些研究表明,血管和脑脊液(CSF)因素可能在NTG的发展中起重要作用。功能或结构异常引起的血管衰竭,以及视神经蛛网膜下腔分隔与脑脊液动力学紊乱已被证明与NTG有关。在本文中,基于淋巴系统的概念和对NTG患者的观察,我们假设视神经中通过淋巴通路的液体运输失败可能参与了一些(如果不是很多)NTG的发病机制。根据这一假设,血管和脑脊液因子可能共同减少视神经中的淋巴运输和血管周围废物清除,这是导致NTG发展的最终共同途径。此外,我们推测一些NTG病例可能反映了自然脑衰老和中枢神经系统疾病(如阿尔茨海默病)中的淋巴功能障碍。显然,需要进一步的研究来进一步了解这些因素和条件对视神经中淋巴运输减少的相对贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Eye and Brain
Eye and Brain OPHTHALMOLOGY-
CiteScore
7.90
自引率
2.30%
发文量
12
审稿时长
16 weeks
期刊介绍: Eye and Brain is an international, peer-reviewed, open access journal focusing on basic research, clinical findings, and expert reviews in the field of visual science and neuro-ophthalmology. The journal’s unique focus is the link between two well-known visual centres, the eye and the brain, with an emphasis on the importance of such connections. All aspects of clinical and especially basic research on the visual system are addressed within the journal as well as significant future directions in vision research and therapeutic measures. This unique journal focuses on neurological aspects of vision – both physiological and pathological. The scope of the journal spans from the cornea to the associational visual cortex and all the visual centers in between. Topics range from basic biological mechanisms to therapeutic treatment, from simple organisms to humans, and utilizing techniques from molecular biology to behavior. The journal especially welcomes primary research articles or review papers that make the connection between the eye and the brain. Specific areas covered in the journal include: Physiology and pathophysiology of visual centers, Eye movement disorders and strabismus, Cellular, biochemical, and molecular features of the visual system, Structural and functional organization of the eye and of the visual cortex, Metabolic demands of the visual system, Diseases and disorders with neuro-ophthalmic manifestations, Clinical and experimental neuro-ophthalmology and visual system pathologies, Epidemiological studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信