{"title":"Artificial Intelligence for Emerging Technology in Surgery: Systematic Review and Validation","authors":"Ephraim Nwoye;Wai Lok Woo;Bin Gao;Tobenna Anyanwu","doi":"10.1109/RBME.2022.3183852","DOIUrl":null,"url":null,"abstract":"Surgery is a high-risk procedure of therapy and is associated to post trauma complications of longer hospital stay, estimated blood loss and long duration of surgeries. Reports have suggested that over 2.5% patients die during and post operation. This paper is aimed at systematic review of previous research on artificial intelligence (AI) in surgery, analyzing their results with suitable software to validate their research by obtaining same or contrary results. Six published research articles have been reviewed across three continents. These articles have been re-validated using software including SPSS and MedCalc to obtain the statistical features such as the mean, standard deviation, significant level, and standard error. From the significant values, the experiments are then classified according to the null (p < 0.05) or alternative (p>0.05) hypotheses. The results obtained from the analysis have suggested significant difference in operating time, docking time, staging time, and estimated blood loss but show no significant difference in length of hospital stay, recovery time and lymph nodes harvested between robotic assisted surgery using AI and normal conventional surgery. From the evaluations, this research suggests that AI-assisted surgery improves over the conventional surgery as safer and more efficient system of surgery with minimal or no complications.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":17.2000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9798714/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 6
Abstract
Surgery is a high-risk procedure of therapy and is associated to post trauma complications of longer hospital stay, estimated blood loss and long duration of surgeries. Reports have suggested that over 2.5% patients die during and post operation. This paper is aimed at systematic review of previous research on artificial intelligence (AI) in surgery, analyzing their results with suitable software to validate their research by obtaining same or contrary results. Six published research articles have been reviewed across three continents. These articles have been re-validated using software including SPSS and MedCalc to obtain the statistical features such as the mean, standard deviation, significant level, and standard error. From the significant values, the experiments are then classified according to the null (p < 0.05) or alternative (p>0.05) hypotheses. The results obtained from the analysis have suggested significant difference in operating time, docking time, staging time, and estimated blood loss but show no significant difference in length of hospital stay, recovery time and lymph nodes harvested between robotic assisted surgery using AI and normal conventional surgery. From the evaluations, this research suggests that AI-assisted surgery improves over the conventional surgery as safer and more efficient system of surgery with minimal or no complications.
期刊介绍:
IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.