Insight into the assembly of lipid-hyaluronan complexes in osteoarthritic conditions.

IF 1.6 4区 医学 Q4 BIOPHYSICS
Biointerphases Pub Date : 2023-04-11 DOI:10.1116/6.0002502
Kangdi Sun, Tooba Shoaib, Mark W Rutland, Joseph Beller, Changwoo Do, Rosa M Espinosa-Marzal
{"title":"Insight into the assembly of lipid-hyaluronan complexes in osteoarthritic conditions.","authors":"Kangdi Sun,&nbsp;Tooba Shoaib,&nbsp;Mark W Rutland,&nbsp;Joseph Beller,&nbsp;Changwoo Do,&nbsp;Rosa M Espinosa-Marzal","doi":"10.1116/6.0002502","DOIUrl":null,"url":null,"abstract":"<p><p>Interactions between molecules in the synovial fluid and the cartilage surface may play a vital role in the formation of adsorbed films that contribute to the low friction of cartilage boundary lubrication. Osteoarthritis (OA) is the most common degenerative joint disease. Previous studies have shown that in OA-diseased joints, hyaluronan (HA) not only breaks down resulting in a much lower molecular weight (MW), but also its concentration is reduced ten times. Here, we have investigated the structural changes of lipid-HA complexes as a function of HA concentration and MW to simulate the physiologically relevant conditions that exist in healthy and diseased joints. Small angle neutron scattering and dynamic light scattering were used to determine the structure of HA-lipid vesicles in bulk solution, while a combination of atomic force microscopy and quartz crystal microbalance was applied to study their assembly on a gold surface. We infer a significant influence of both MW and HA concentrations on the structure of HA-lipid complexes in bulk and assembled on a gold surface. Our results suggest that low MW HA cannot form an amorphous layer on the gold surface, which is expected to negatively impact the mechanical integrity and longevity of the boundary layer and could contribute to the increased wear of the cartilage that has been reported in joints diseased with OA.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"18 2","pages":"021005"},"PeriodicalIF":1.6000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0002502","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

Interactions between molecules in the synovial fluid and the cartilage surface may play a vital role in the formation of adsorbed films that contribute to the low friction of cartilage boundary lubrication. Osteoarthritis (OA) is the most common degenerative joint disease. Previous studies have shown that in OA-diseased joints, hyaluronan (HA) not only breaks down resulting in a much lower molecular weight (MW), but also its concentration is reduced ten times. Here, we have investigated the structural changes of lipid-HA complexes as a function of HA concentration and MW to simulate the physiologically relevant conditions that exist in healthy and diseased joints. Small angle neutron scattering and dynamic light scattering were used to determine the structure of HA-lipid vesicles in bulk solution, while a combination of atomic force microscopy and quartz crystal microbalance was applied to study their assembly on a gold surface. We infer a significant influence of both MW and HA concentrations on the structure of HA-lipid complexes in bulk and assembled on a gold surface. Our results suggest that low MW HA cannot form an amorphous layer on the gold surface, which is expected to negatively impact the mechanical integrity and longevity of the boundary layer and could contribute to the increased wear of the cartilage that has been reported in joints diseased with OA.

洞察脂质-透明质酸复合物在骨关节炎条件下的组装。
滑液分子与软骨表面之间的相互作用可能在吸附膜的形成中起着至关重要的作用,这有助于软骨边界润滑的低摩擦。骨关节炎(OA)是最常见的退行性关节疾病。先前的研究表明,在oa患病的关节中,透明质酸(HA)不仅分解导致分子量(MW)大大降低,而且其浓度也降低了10倍。在这里,我们研究了脂质-HA复合物的结构变化作为HA浓度和MW的函数,以模拟健康和患病关节中存在的生理相关条件。利用小角中子散射和动态光散射测定了体溶液中ha -脂质囊泡的结构,并结合原子力显微镜和石英晶体微天平研究了ha -脂质囊泡在金表面的组装。我们推断,分子量和透明质酸浓度对HA-脂质复合物的结构和组装在金表面有显著的影响。我们的研究结果表明,低MW HA不能在金表面形成无定形层,这预计会对边界层的机械完整性和寿命产生负面影响,并可能导致软骨磨损增加,这已经报道了关节炎关节病变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biointerphases
Biointerphases 生物-材料科学:生物材料
自引率
0.00%
发文量
35
期刊介绍: Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee. Topics include: bio-surface modification nano-bio interface protein-surface interactions cell-surface interactions in vivo and in vitro systems biofilms / biofouling biosensors / biodiagnostics bio on a chip coatings interface spectroscopy biotribology / biorheology molecular recognition ambient diagnostic methods interface modelling adhesion phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信