{"title":"Cell Death Pathways: The Variable Mechanisms Underlying Fine Particulate Matter-Induced Cytotoxicity","authors":"Yucai Chen, Yue Wu, Yu Qi* and Sijin Liu, ","doi":"10.1021/acsnanoscienceau.2c00059","DOIUrl":null,"url":null,"abstract":"<p >Recently, the advent of health risks due to the cytotoxicity of fine particulate matter (FPM) is concerning. Numerous studies have reported abundant data elucidating the FPM-induced cell death pathways. However, several challenges and knowledge gaps are still confronted nowadays. On one hand, the undefined components of FPM (such as heavy metals, polycyclic aromatic hydrocarbons, and pathogens) are all responsible for detrimental effects, thus rendering it difficult to delineate the specific roles of these copollutants. On the other hand, owing to the crosstalk and interplay among different cell death signaling pathways, precisely determining the threats and risks posed by FPM is difficult. Herein, we recapitulate the current knowledge gaps present in the recent studies regarding FPM-induced cell death, and propose future research directions for policy-making to prevent FPM-induced diseases and improve knowledge concerning the adverse outcome pathways and public health risks of FPM.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e9/8f/ng2c00059.PMC10125306.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.2c00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Recently, the advent of health risks due to the cytotoxicity of fine particulate matter (FPM) is concerning. Numerous studies have reported abundant data elucidating the FPM-induced cell death pathways. However, several challenges and knowledge gaps are still confronted nowadays. On one hand, the undefined components of FPM (such as heavy metals, polycyclic aromatic hydrocarbons, and pathogens) are all responsible for detrimental effects, thus rendering it difficult to delineate the specific roles of these copollutants. On the other hand, owing to the crosstalk and interplay among different cell death signaling pathways, precisely determining the threats and risks posed by FPM is difficult. Herein, we recapitulate the current knowledge gaps present in the recent studies regarding FPM-induced cell death, and propose future research directions for policy-making to prevent FPM-induced diseases and improve knowledge concerning the adverse outcome pathways and public health risks of FPM.
期刊介绍:
ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.