{"title":"Biocompatibility evaluation of polyethersulfone-pyrolytic carbon composite membrane in artificial pancreas.","authors":"Reza Peighami, Mohamadreza Mehrnia, Fatemeh Yazdian, Mojgan Sheikhpour","doi":"10.1116/6.0002155","DOIUrl":null,"url":null,"abstract":"<p><p>Polyethersulfone (PES) membranes are widely used in medical devices, especially intravascular devices such as intravascular bioartificial pancreases. In the current work, the pure PES and PES-pyrolytic carbon (PyC) composite membranes were synthesized and permeability studies were conducted. In addition, the cytocompatibility and hemocompatibility of the pure PES and PES-PyC membranes were investigated. These materials were characterized using peripheral blood mononuclear cell (PBMC) activation, platelet activation, platelet adhesion, ß-cell viability and proliferation, and ß-cell response to hyperglycemia. The results showed that platelet activation decreased from 87.3% to 27.8%. Any alteration in the morphology of sticking platelets was prevented, and the number of attached platelets decreased by modification with PyC. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay corroborated that PBMC activation was encouraged by the PyC-modified PES membrane surface. It can be concluded that PES-modified membranes show higher hemocompatibility than pure PES membranes. ß-cells cultured on all the three membranes displayed a lower rate of proliferation although the cells on the PES-PyC (0.1 wt. %) membrane indicated a slightly higher viability and proliferation than those on the pure PES and PES-PyC (0.05 wt. %) membranes. It shows that the PES-PyC (0.1 wt. %) membrane possesses superior cytocompatibility over the other membranes.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"18 2","pages":"021003"},"PeriodicalIF":1.6000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0002155","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Polyethersulfone (PES) membranes are widely used in medical devices, especially intravascular devices such as intravascular bioartificial pancreases. In the current work, the pure PES and PES-pyrolytic carbon (PyC) composite membranes were synthesized and permeability studies were conducted. In addition, the cytocompatibility and hemocompatibility of the pure PES and PES-PyC membranes were investigated. These materials were characterized using peripheral blood mononuclear cell (PBMC) activation, platelet activation, platelet adhesion, ß-cell viability and proliferation, and ß-cell response to hyperglycemia. The results showed that platelet activation decreased from 87.3% to 27.8%. Any alteration in the morphology of sticking platelets was prevented, and the number of attached platelets decreased by modification with PyC. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay corroborated that PBMC activation was encouraged by the PyC-modified PES membrane surface. It can be concluded that PES-modified membranes show higher hemocompatibility than pure PES membranes. ß-cells cultured on all the three membranes displayed a lower rate of proliferation although the cells on the PES-PyC (0.1 wt. %) membrane indicated a slightly higher viability and proliferation than those on the pure PES and PES-PyC (0.05 wt. %) membranes. It shows that the PES-PyC (0.1 wt. %) membrane possesses superior cytocompatibility over the other membranes.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.