Biocompatibility evaluation of polyethersulfone-pyrolytic carbon composite membrane in artificial pancreas.

IF 1.6 4区 医学 Q4 BIOPHYSICS
Biointerphases Pub Date : 2023-03-21 DOI:10.1116/6.0002155
Reza Peighami, Mohamadreza Mehrnia, Fatemeh Yazdian, Mojgan Sheikhpour
{"title":"Biocompatibility evaluation of polyethersulfone-pyrolytic carbon composite membrane in artificial pancreas.","authors":"Reza Peighami,&nbsp;Mohamadreza Mehrnia,&nbsp;Fatemeh Yazdian,&nbsp;Mojgan Sheikhpour","doi":"10.1116/6.0002155","DOIUrl":null,"url":null,"abstract":"<p><p>Polyethersulfone (PES) membranes are widely used in medical devices, especially intravascular devices such as intravascular bioartificial pancreases. In the current work, the pure PES and PES-pyrolytic carbon (PyC) composite membranes were synthesized and permeability studies were conducted. In addition, the cytocompatibility and hemocompatibility of the pure PES and PES-PyC membranes were investigated. These materials were characterized using peripheral blood mononuclear cell (PBMC) activation, platelet activation, platelet adhesion, ß-cell viability and proliferation, and ß-cell response to hyperglycemia. The results showed that platelet activation decreased from 87.3% to 27.8%. Any alteration in the morphology of sticking platelets was prevented, and the number of attached platelets decreased by modification with PyC. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay corroborated that PBMC activation was encouraged by the PyC-modified PES membrane surface. It can be concluded that PES-modified membranes show higher hemocompatibility than pure PES membranes. ß-cells cultured on all the three membranes displayed a lower rate of proliferation although the cells on the PES-PyC (0.1 wt. %) membrane indicated a slightly higher viability and proliferation than those on the pure PES and PES-PyC (0.05 wt. %) membranes. It shows that the PES-PyC (0.1 wt. %) membrane possesses superior cytocompatibility over the other membranes.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"18 2","pages":"021003"},"PeriodicalIF":1.6000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0002155","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Polyethersulfone (PES) membranes are widely used in medical devices, especially intravascular devices such as intravascular bioartificial pancreases. In the current work, the pure PES and PES-pyrolytic carbon (PyC) composite membranes were synthesized and permeability studies were conducted. In addition, the cytocompatibility and hemocompatibility of the pure PES and PES-PyC membranes were investigated. These materials were characterized using peripheral blood mononuclear cell (PBMC) activation, platelet activation, platelet adhesion, ß-cell viability and proliferation, and ß-cell response to hyperglycemia. The results showed that platelet activation decreased from 87.3% to 27.8%. Any alteration in the morphology of sticking platelets was prevented, and the number of attached platelets decreased by modification with PyC. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay corroborated that PBMC activation was encouraged by the PyC-modified PES membrane surface. It can be concluded that PES-modified membranes show higher hemocompatibility than pure PES membranes. ß-cells cultured on all the three membranes displayed a lower rate of proliferation although the cells on the PES-PyC (0.1 wt. %) membrane indicated a slightly higher viability and proliferation than those on the pure PES and PES-PyC (0.05 wt. %) membranes. It shows that the PES-PyC (0.1 wt. %) membrane possesses superior cytocompatibility over the other membranes.

聚醚砜-热解碳复合膜在人工胰腺中的生物相容性评价。
聚醚砜(PES)膜广泛应用于医疗器械,特别是血管内装置,如血管内生物人工胰腺。本文合成了纯聚醚砜(PES)和聚醚砜-热解碳(PyC)复合膜,并进行了透气性研究。此外,还研究了PES和PES- pyc纯膜的细胞相容性和血液相容性。利用外周血单核细胞(PBMC)活化、血小板活化、血小板粘附、ß-细胞活力和增殖以及ß-细胞对高血糖的反应对这些材料进行表征。结果表明,血小板活化率由87.3%降至27.8%。通过PyC修饰,可以防止粘附血小板形态的任何改变,并且粘附血小板的数量减少。3-(4,5 -二甲基噻唑-2-基)- 2,5 -二苯基溴化四唑实验证实,pyc修饰的PES膜表面促进了PBMC的活化。由此可见,PES改性膜比纯PES膜具有更高的血液相容性。ß-细胞在三种膜上均表现出较低的增殖率,但PES- pyc (0.1 wt. %)膜上的细胞活力和增殖率略高于纯PES和PES- pyc (0.05 wt. %)膜上的细胞。结果表明,PES-PyC (0.1 wt. %)膜比其他膜具有更好的细胞相容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biointerphases
Biointerphases 生物-材料科学:生物材料
自引率
0.00%
发文量
35
期刊介绍: Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee. Topics include: bio-surface modification nano-bio interface protein-surface interactions cell-surface interactions in vivo and in vitro systems biofilms / biofouling biosensors / biodiagnostics bio on a chip coatings interface spectroscopy biotribology / biorheology molecular recognition ambient diagnostic methods interface modelling adhesion phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信