Application of neural networks for the detection of oral cancer: A systematic review.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
María Del Pilar Beristain-Colorado, María Eugenia Marcela Castro-Gutiérrez, Rafael Torres-Rosas, Marciano Vargas-Treviño, Adriana Moreno-Rodríguez, Gisela Fuentes-Mascorro, Liliana Argueta-Figueroa
{"title":"Application of neural networks for the detection of oral cancer: A systematic review.","authors":"María Del Pilar Beristain-Colorado, María Eugenia Marcela Castro-Gutiérrez, Rafael Torres-Rosas, Marciano Vargas-Treviño, Adriana Moreno-Rodríguez, Gisela Fuentes-Mascorro, Liliana Argueta-Figueroa","doi":"10.17219/dmp/159871","DOIUrl":null,"url":null,"abstract":"<p><p>One potential application of neural networks (NNs) is the early-stage detection of oral cancer. This systematic review aimed to determine the level of evidence on the sensitivity and specificity of NNs for the detection of oral cancer, following the Preferred Reporting Items for Systematic Reviews and MetaAnalyses (PRISMA) and Cochrane guidelines. Literature sources included PubMed, ClinicalTrials, Scopus, Google Scholar, and Web of Science. In addition, the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool was used to assess the risk of bias and the quality of the studies. Only 9 studies fully met the eligibility criteria. In most studies, NNs showed accuracy greater than 85%, though 100% of the studies presented a high risk of bias, and 33% showed high applicability concerns. Nonetheless, the included studies demonstrated that NNs were useful in the detection of oral cancer. However, studies of higher quality, with an adequate methodology, a low risk of bias and no applicability concerns are required so that more robust conclusions could be reached.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17219/dmp/159871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

One potential application of neural networks (NNs) is the early-stage detection of oral cancer. This systematic review aimed to determine the level of evidence on the sensitivity and specificity of NNs for the detection of oral cancer, following the Preferred Reporting Items for Systematic Reviews and MetaAnalyses (PRISMA) and Cochrane guidelines. Literature sources included PubMed, ClinicalTrials, Scopus, Google Scholar, and Web of Science. In addition, the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool was used to assess the risk of bias and the quality of the studies. Only 9 studies fully met the eligibility criteria. In most studies, NNs showed accuracy greater than 85%, though 100% of the studies presented a high risk of bias, and 33% showed high applicability concerns. Nonetheless, the included studies demonstrated that NNs were useful in the detection of oral cancer. However, studies of higher quality, with an adequate methodology, a low risk of bias and no applicability concerns are required so that more robust conclusions could be reached.

应用神经网络检测口腔癌:系统综述。
神经网络 (NN) 的一个潜在应用是口腔癌的早期检测。本系统综述旨在确定神经网络检测口腔癌的灵敏度和特异性的证据水平,遵循系统综述和元分析首选报告项目 (PRISMA) 和 Cochrane 指南。文献来源包括 PubMed、ClinicalTrials、Scopus、Google Scholar 和 Web of Science。此外,还使用了诊断准确性研究质量评估 2 (QUADAS-2) 工具来评估偏倚风险和研究质量。只有 9 项研究完全符合资格标准。在大多数研究中,无创诊断的准确率高于 85%,但 100%的研究存在高偏倚风险,33%的研究存在高适用性问题。尽管如此,纳入的研究表明,NN 对检测口腔癌很有用。不过,还需要质量更高、方法充分、偏倚风险低且不存在适用性问题的研究,这样才能得出更可靠的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信