Mandar Bandekar, Nagappa Ramaiah, Seyieleno C Seleyi, Delcy R Nazareth, Jukka Kekäläinen
{"title":"Diversity and Quantitative Detection of Clade I Type nosZ Denitrifiers in the Arabian Sea Oxygen Minimum Zone.","authors":"Mandar Bandekar, Nagappa Ramaiah, Seyieleno C Seleyi, Delcy R Nazareth, Jukka Kekäläinen","doi":"10.1264/jsme2.ME22056","DOIUrl":null,"url":null,"abstract":"<p><p>A significant amount of nitrous oxide (N<sub>2</sub>O) is effluxed into the atmosphere as a result of marine denitrification in the Arabian Sea (AS) oxygen minimum zone (OMZ). An assessment of temporal variations in the diversity and abundance of nosZ denitrifiers was performed to establish the relative importance of these bacteria in denitrification. Sampling was conducted at the Arabian Sea Time Series (ASTS) location and a quantitative PCR (qPCR) ana-lysis was performed. We detected a high abundance of the nosZ gene at core OMZ depths (250 m and 500 m), indicating the occurrence of denitrification in the AS-OMZ. The maximum abundance of the nosZ gene was observed during the Spring Intermonsoon (SIM) at 250 m (1.32×10<sup>6</sup> copies L<sup>-1</sup>) and 500 m (1.50×10<sup>6</sup> copies L<sup>-1</sup>). Sequencing ana-lysis showed that nosZ denitrifiers belonged to the classes Alpha-, Beta-, and Gammaproteobacteria. Taxonomic ana-lysis revealed that most OTUs were affiliated with Pseudomonas, Rhodopseudomonas, and Bradyrhizobium. Diversity indices and richness estimators confirmed a higher diversity of nosZ denitrifiers at 250 m than at 500 m during all three seasons. The present results also indicated that dissolved oxygen (DO) and total organic carbon (TOC) are critical factors influencing the diversity and abundance of the nosZ-denitrifying bacterial community.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"38 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10037096/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Environments","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1264/jsme2.ME22056","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A significant amount of nitrous oxide (N2O) is effluxed into the atmosphere as a result of marine denitrification in the Arabian Sea (AS) oxygen minimum zone (OMZ). An assessment of temporal variations in the diversity and abundance of nosZ denitrifiers was performed to establish the relative importance of these bacteria in denitrification. Sampling was conducted at the Arabian Sea Time Series (ASTS) location and a quantitative PCR (qPCR) ana-lysis was performed. We detected a high abundance of the nosZ gene at core OMZ depths (250 m and 500 m), indicating the occurrence of denitrification in the AS-OMZ. The maximum abundance of the nosZ gene was observed during the Spring Intermonsoon (SIM) at 250 m (1.32×106 copies L-1) and 500 m (1.50×106 copies L-1). Sequencing ana-lysis showed that nosZ denitrifiers belonged to the classes Alpha-, Beta-, and Gammaproteobacteria. Taxonomic ana-lysis revealed that most OTUs were affiliated with Pseudomonas, Rhodopseudomonas, and Bradyrhizobium. Diversity indices and richness estimators confirmed a higher diversity of nosZ denitrifiers at 250 m than at 500 m during all three seasons. The present results also indicated that dissolved oxygen (DO) and total organic carbon (TOC) are critical factors influencing the diversity and abundance of the nosZ-denitrifying bacterial community.
期刊介绍:
Microbial ecology in natural and engineered environments; Microbial degradation of xenobiotic compounds; Microbial processes in biogeochemical cycles; Microbial interactions and signaling with animals and plants; Interactions among microorganisms; Microorganisms related to public health; Phylogenetic and functional diversity of microbial communities; Genomics, metagenomics, and bioinformatics for microbiology; Application of microorganisms to agriculture, fishery, and industry; Molecular biology and biochemistry related to environmental microbiology; Methodology in general and environmental microbiology; Interdisciplinary research areas for microbial ecology (e.g., Astrobiology, and Origins of Life); Taxonomic description of novel microorganisms with ecological perspective; Physiology and metabolisms of microorganisms; Evolution of genes and microorganisms; Genome report of microorganisms with ecological perspective.