Kexin Sun , Tingting Lu , Cheng Hu , Zhengyi Li , Jie Zhu , Li Zhang , Xiaotong Shao , Wei Chen
{"title":"LINC00115 regulates lung adenocarcinoma progression via sponging miR-154-3p to modulate Sp3 expression","authors":"Kexin Sun , Tingting Lu , Cheng Hu , Zhengyi Li , Jie Zhu , Li Zhang , Xiaotong Shao , Wei Chen","doi":"10.1016/j.mcp.2023.101909","DOIUrl":null,"url":null,"abstract":"<div><p>The most commonly diagnosed and most lethal subtype of lung cancer is lung adenocarcinoma (LUAD). Therefore, more detailed understanding of the potential mechanism and identification of potential targets of lung adenocarcinoma is needed. A growing number of reports reveals that long non-coding RNAs (lncRNAs) play crucial roles in cancer progression. In present study, we found that lncRNA LINC00115 was upregulated in LUAD tissues and cells. Functional studies revealed that LINC00115 knockdown inhibits the proliferation, growth, invasion, and migration of LUAD cells. Mechanically, we indicated that miR-154-3p is target microRNA of LINC00115, and the effect of downregulated LINC00115 on LUAD cells was partially reversed by the miR-154-3p antisense oligonucleotide (ASO-miR-154-3p). Further investigation revealed that Specificity protein 3 (Sp3) directly interacted with miR-154-3p, and the Sp3 level was positively correlated with the LINC00115 expression. Rescue experiments further showed that Sp3 overexpression partially restored the effect of downregulated LINC00115 on LUAD cells. Similarly, <em>in vivo</em> experiments confirmed that downregulated LINC00115 inhibited xenograft growth and Sp3 expression. Our results demonstrated that LINC00115 knockdown inhibited LUAD progression via sponging miR-154-3p to modulate Sp3 expression. These data indicate that the LINC00115/miR-154-3p/Sp3 axis can be a potential therapeutic target of LUAD.</p></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":"68 ","pages":"Article 101909"},"PeriodicalIF":2.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Probes","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089085082300018X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 1
Abstract
The most commonly diagnosed and most lethal subtype of lung cancer is lung adenocarcinoma (LUAD). Therefore, more detailed understanding of the potential mechanism and identification of potential targets of lung adenocarcinoma is needed. A growing number of reports reveals that long non-coding RNAs (lncRNAs) play crucial roles in cancer progression. In present study, we found that lncRNA LINC00115 was upregulated in LUAD tissues and cells. Functional studies revealed that LINC00115 knockdown inhibits the proliferation, growth, invasion, and migration of LUAD cells. Mechanically, we indicated that miR-154-3p is target microRNA of LINC00115, and the effect of downregulated LINC00115 on LUAD cells was partially reversed by the miR-154-3p antisense oligonucleotide (ASO-miR-154-3p). Further investigation revealed that Specificity protein 3 (Sp3) directly interacted with miR-154-3p, and the Sp3 level was positively correlated with the LINC00115 expression. Rescue experiments further showed that Sp3 overexpression partially restored the effect of downregulated LINC00115 on LUAD cells. Similarly, in vivo experiments confirmed that downregulated LINC00115 inhibited xenograft growth and Sp3 expression. Our results demonstrated that LINC00115 knockdown inhibited LUAD progression via sponging miR-154-3p to modulate Sp3 expression. These data indicate that the LINC00115/miR-154-3p/Sp3 axis can be a potential therapeutic target of LUAD.
期刊介绍:
MCP - Advancing biology through–omics and bioinformatic technologies wants to capture outcomes from the current revolution in molecular technologies and sciences. The journal has broadened its scope and embraces any high quality research papers, reviews and opinions in areas including, but not limited to, molecular biology, cell biology, biochemistry, immunology, physiology, epidemiology, ecology, virology, microbiology, parasitology, genetics, evolutionary biology, genomics (including metagenomics), bioinformatics, proteomics, metabolomics, glycomics, and lipidomics. Submissions with a technology-driven focus on understanding normal biological or disease processes as well as conceptual advances and paradigm shifts are particularly encouraged. The Editors welcome fundamental or applied research areas; pre-submission enquiries about advanced draft manuscripts are welcomed. Top quality research and manuscripts will be fast-tracked.