Amr A Abdeen, Brian D Cosgrove, Charles A Gersbach, Krishanu Saha
{"title":"Integrating Biomaterials and Genome Editing Approaches to Advance Biomedical Science.","authors":"Amr A Abdeen, Brian D Cosgrove, Charles A Gersbach, Krishanu Saha","doi":"10.1146/annurev-bioeng-122019-121602","DOIUrl":null,"url":null,"abstract":"<p><p>The recent discovery and subsequent development of the CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat-CRISPR-associated protein 9) platform as a precise genome editing tool have transformed biomedicine. As these CRISPR-based tools have matured, multiple stages of the gene editing process and the bioengineering of human cells and tissues have advanced. Here, we highlight recent intersections in the development of biomaterials and genome editing technologies. These intersections include the delivery of macromolecules, where biomaterial platforms have been harnessed to enable nonviral delivery of genome engineering tools to cells and tissues in vivo. Further, engineering native-like biomaterial platforms for cell culture facilitates complex modeling of human development and disease when combined with genome engineering tools. Deeper integration of biomaterial platforms in these fields could play a significant role in enabling new breakthroughs in the application of gene editing for the treatment of human disease.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":"23 ","pages":"493-516"},"PeriodicalIF":12.8000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-bioeng-122019-121602","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The recent discovery and subsequent development of the CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat-CRISPR-associated protein 9) platform as a precise genome editing tool have transformed biomedicine. As these CRISPR-based tools have matured, multiple stages of the gene editing process and the bioengineering of human cells and tissues have advanced. Here, we highlight recent intersections in the development of biomaterials and genome editing technologies. These intersections include the delivery of macromolecules, where biomaterial platforms have been harnessed to enable nonviral delivery of genome engineering tools to cells and tissues in vivo. Further, engineering native-like biomaterial platforms for cell culture facilitates complex modeling of human development and disease when combined with genome engineering tools. Deeper integration of biomaterial platforms in these fields could play a significant role in enabling new breakthroughs in the application of gene editing for the treatment of human disease.
期刊介绍:
Since 1999, the Annual Review of Biomedical Engineering has been capturing major advancements in the expansive realm of biomedical engineering. Encompassing biomechanics, biomaterials, computational genomics and proteomics, tissue engineering, biomonitoring, healthcare engineering, drug delivery, bioelectrical engineering, biochemical engineering, and biomedical imaging, the journal remains a vital resource. The current volume has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.