Remarks on the equation 1k + 2k + + (x − 1)k= xk

Jerzy Urbanowicz
{"title":"Remarks on the equation 1k + 2k + + (x − 1)k= xk","authors":"Jerzy Urbanowicz","doi":"10.1016/S1385-7258(88)80014-3","DOIUrl":null,"url":null,"abstract":"<div><p>For every <em>t</em> there is an explicitly given number <em>k</em><sub>0</sub> such that the equation 1<sup><em>k</em></sup> + 2<sup><em>k</em></sup> + + (x − 1)<sup><em>k</em></sup>= x<sup><em>k</em></sup> has no integer solutions <em>x</em>≥2 for all <em>k</em><sub>0</sub> for which the denominator of the <em>k</em>th Bernoulli number <em>B</em><sub>k</sub>has at most <em>t</em> distinct prime factors.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"91 3","pages":"Pages 343-348"},"PeriodicalIF":0.0000,"publicationDate":"1988-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(88)80014-3","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725888800143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

For every t there is an explicitly given number k0 such that the equation 1k + 2k + + (x − 1)k= xk has no integer solutions x≥2 for all k0 for which the denominator of the kth Bernoulli number Bkhas at most t distinct prime factors.

方程1k + 2k + + (x−1)k= xk的注释
对于每一个t,有一个显式给定的数k0,使得方程1k + 2k + + (x−1)k= xk对于所有k0没有整数解x≥2,其中第k个伯努利数的分母最多有t个不同的素数因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信