Evaluating deep learning predictions for COVID-19 from X-ray images using leave-one-out predictive densities.

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Sergio Hernández, Xaviera López-Córtes
{"title":"Evaluating deep learning predictions for COVID-19 from X-ray images using leave-one-out predictive densities.","authors":"Sergio Hernández,&nbsp;Xaviera López-Córtes","doi":"10.1007/s00521-023-08219-3","DOIUrl":null,"url":null,"abstract":"<p><p>Early detection of the COVID-19 virus is an important task for controlling the spread of the pandemic. Imaging techniques such as chest X-ray are relatively inexpensive and accessible, but its interpretation requires expert knowledge to evaluate the disease severity. Several approaches for automatic COVID-19 detection using deep learning techniques have been proposed. While most approaches show high accuracy on the COVID-19 detection task, there is not enough evidence on external evaluation for this technique. Furthermore, data scarcity and sampling biases make difficult to properly evaluate model predictions. In this paper, we propose stochastic gradient Langevin dynamics (SGLD) to take into account the model uncertainty. Four different deep learning architectures are trained using SGLD and compared to their baselines using stochastic gradient descent. The model uncertainties are also evaluated according to their convergence properties and the leave-one-out predictive densities. The proposed approach is able to reduce overconfidence of the baseline estimators while also retaining predictive accuracy for the best-performing cases.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900537/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-023-08219-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

Abstract

Early detection of the COVID-19 virus is an important task for controlling the spread of the pandemic. Imaging techniques such as chest X-ray are relatively inexpensive and accessible, but its interpretation requires expert knowledge to evaluate the disease severity. Several approaches for automatic COVID-19 detection using deep learning techniques have been proposed. While most approaches show high accuracy on the COVID-19 detection task, there is not enough evidence on external evaluation for this technique. Furthermore, data scarcity and sampling biases make difficult to properly evaluate model predictions. In this paper, we propose stochastic gradient Langevin dynamics (SGLD) to take into account the model uncertainty. Four different deep learning architectures are trained using SGLD and compared to their baselines using stochastic gradient descent. The model uncertainties are also evaluated according to their convergence properties and the leave-one-out predictive densities. The proposed approach is able to reduce overconfidence of the baseline estimators while also retaining predictive accuracy for the best-performing cases.

Abstract Image

Abstract Image

Abstract Image

利用留一预测密度评估x射线图像对COVID-19的深度学习预测。
及早发现新冠肺炎病毒是控制疫情蔓延的重要任务。像胸部x线这样的成像技术相对便宜且容易获得,但其解释需要专业知识来评估疾病的严重程度。已经提出了几种使用深度学习技术自动检测COVID-19的方法。虽然大多数方法在COVID-19检测任务上显示出较高的准确性,但对该技术的外部评估证据不足。此外,数据稀缺性和抽样偏差使得难以正确评估模型预测。本文提出了考虑模型不确定性的随机梯度朗之万动力学(SGLD)。使用SGLD训练四种不同的深度学习架构,并使用随机梯度下降与它们的基线进行比较。根据模型的收敛性和留一预测密度对模型的不确定性进行了评价。所提出的方法能够减少基线估计器的过度置信度,同时也保留了最佳执行情况的预测准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Computing & Applications
Neural Computing & Applications 工程技术-计算机:人工智能
CiteScore
11.40
自引率
8.30%
发文量
1280
审稿时长
6.9 months
期刊介绍: Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems. All items relevant to building practical systems are within its scope, including but not limited to: -adaptive computing- algorithms- applicable neural networks theory- applied statistics- architectures- artificial intelligence- benchmarks- case histories of innovative applications- fuzzy logic- genetic algorithms- hardware implementations- hybrid intelligent systems- intelligent agents- intelligent control systems- intelligent diagnostics- intelligent forecasting- machine learning- neural networks- neuro-fuzzy systems- pattern recognition- performance measures- self-learning systems- software simulations- supervised and unsupervised learning methods- system engineering and integration. Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信