Jie Huang, Cheng Xu, Zhaohua Ji, Shan Xiao, Teng Liu, Nan Ma, Qinghui Zhou
{"title":"An Intelligent Channel Estimation Algorithm Based on Extended Model for 5G-V2X.","authors":"Jie Huang, Cheng Xu, Zhaohua Ji, Shan Xiao, Teng Liu, Nan Ma, Qinghui Zhou","doi":"10.1089/big.2022.0029","DOIUrl":null,"url":null,"abstract":"<p><p>Car networking systems based on 5G-V2X (vehicle-to-everything) have high requirements for reliability and low-latency communication to further improve communication performance. In the V2X scenario, this article establishes an extended model (basic expansion model) suitable for high-speed mobile scenarios based on the sparsity of the channel impulse response. And propose a channel estimation algorithm based on deep learning, the method designed a multilayer convolutional neural network to complete frequency domain interpolation. A two-way control cycle gating unit (bidirectional gated recurrent unit) is designed to predict the state in the time domain. And introduce speed parameters and multipath parameters to accurately train channel data under different moving speed environments. System simulation shows that the proposed algorithm can accurately train the number of channels. Compared with the traditional car networking channel estimation algorithm, the proposed algorithm improves the accuracy of channel estimation and effectively reduces the bit error rate.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2022.0029","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Car networking systems based on 5G-V2X (vehicle-to-everything) have high requirements for reliability and low-latency communication to further improve communication performance. In the V2X scenario, this article establishes an extended model (basic expansion model) suitable for high-speed mobile scenarios based on the sparsity of the channel impulse response. And propose a channel estimation algorithm based on deep learning, the method designed a multilayer convolutional neural network to complete frequency domain interpolation. A two-way control cycle gating unit (bidirectional gated recurrent unit) is designed to predict the state in the time domain. And introduce speed parameters and multipath parameters to accurately train channel data under different moving speed environments. System simulation shows that the proposed algorithm can accurately train the number of channels. Compared with the traditional car networking channel estimation algorithm, the proposed algorithm improves the accuracy of channel estimation and effectively reduces the bit error rate.
Big DataCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍:
Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions.
Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government.
Big Data coverage includes:
Big data industry standards,
New technologies being developed specifically for big data,
Data acquisition, cleaning, distribution, and best practices,
Data protection, privacy, and policy,
Business interests from research to product,
The changing role of business intelligence,
Visualization and design principles of big data infrastructures,
Physical interfaces and robotics,
Social networking advantages for Facebook, Twitter, Amazon, Google, etc,
Opportunities around big data and how companies can harness it to their advantage.