Nuria Goñi Ros, Ricardo González-Tarancón, Paula Sienes Bailo, Elvira Salvador-Ruperez, Martín Puzo Bayod, José Puzo Foncillas
{"title":"A novel pathogenic variant in LCAT causing FLD. A case report.","authors":"Nuria Goñi Ros, Ricardo González-Tarancón, Paula Sienes Bailo, Elvira Salvador-Ruperez, Martín Puzo Bayod, José Puzo Foncillas","doi":"10.1080/17843286.2021.2007598","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Fish-eye disease (FED) is due to a partial deficiency in LCAT activity. Nevertheless, Familial lecithin-cholesterol acyltransferase deficiency (FLD), also called Norum disease, appears when the deficiency is complete. They are both rare genetic disorders inherited in an autosomal recessive manner. Clinical signs include decreased circulating HDL cholesterol and dense corneal opacity. Kidney injuries also affect patients suffering from FLD. The diagnosis of FLD is based on the presence of characteristic signs and symptoms and confirmed by genetic testing.</p><p><strong>Case presentation: </strong>We present a case of a 63-year-old man showing an altered lipid profile with low HDL cholesterol, chronic kidney disease (CKD) and corneal disorders. He was referred to genetic counseling in order to discard genetic LCAT deficiency due to decreased visual acuity caused by corneal opacity. A massive DNA sequencing was conducted using a multigene panel associated with lipid metabolism disturbances.</p><p><strong>Results and genetic findings: </strong>Two likely pathogenic variants in <i>LCAT</i> were identified and later confirmed by Sanger sequencing. Both (c.491 G > A and c.496 G > A) were missense variants that originated an amino acid substitution (164Arginine for Histidine and 166Alanine for Threonine, respectively) modifying the protein sequence and its 3D structure.</p><p><strong>Conclusions: </strong>FLD and FED sharing common biochemical features, and the existence of other diseases with similar clinical profiles underline the need for a timely differential diagnosis aiming to address patients to preventive programs and future available therapies. This case, added to the reduced number of publications previously reported regarding FLD and FED, contributes to better understanding the genetic characteristics, clinical features, and diagnosis of these syndromes.</p>","PeriodicalId":7086,"journal":{"name":"Acta Clinica Belgica","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Clinica Belgica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17843286.2021.2007598","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Fish-eye disease (FED) is due to a partial deficiency in LCAT activity. Nevertheless, Familial lecithin-cholesterol acyltransferase deficiency (FLD), also called Norum disease, appears when the deficiency is complete. They are both rare genetic disorders inherited in an autosomal recessive manner. Clinical signs include decreased circulating HDL cholesterol and dense corneal opacity. Kidney injuries also affect patients suffering from FLD. The diagnosis of FLD is based on the presence of characteristic signs and symptoms and confirmed by genetic testing.
Case presentation: We present a case of a 63-year-old man showing an altered lipid profile with low HDL cholesterol, chronic kidney disease (CKD) and corneal disorders. He was referred to genetic counseling in order to discard genetic LCAT deficiency due to decreased visual acuity caused by corneal opacity. A massive DNA sequencing was conducted using a multigene panel associated with lipid metabolism disturbances.
Results and genetic findings: Two likely pathogenic variants in LCAT were identified and later confirmed by Sanger sequencing. Both (c.491 G > A and c.496 G > A) were missense variants that originated an amino acid substitution (164Arginine for Histidine and 166Alanine for Threonine, respectively) modifying the protein sequence and its 3D structure.
Conclusions: FLD and FED sharing common biochemical features, and the existence of other diseases with similar clinical profiles underline the need for a timely differential diagnosis aiming to address patients to preventive programs and future available therapies. This case, added to the reduced number of publications previously reported regarding FLD and FED, contributes to better understanding the genetic characteristics, clinical features, and diagnosis of these syndromes.
期刊介绍:
Acta Clinica Belgica: International Journal of Clinical and Laboratory Medicine primarily publishes papers on clinical medicine, clinical chemistry, pathology and molecular biology, provided they describe results which contribute to our understanding of clinical problems or describe new methods applicable to clinical investigation. Readership includes physicians, pathologists, pharmacists and physicians working in non-academic and academic hospitals, practicing internal medicine and its subspecialties.