Xing-Zhao Huang , Fang-Bing Li , Zi-Xuan Wang , Yi Jin , Hong Qian
{"title":"Are allometric model parameters of aboveground biomass for trees phylogenetically constrained?","authors":"Xing-Zhao Huang , Fang-Bing Li , Zi-Xuan Wang , Yi Jin , Hong Qian","doi":"10.1016/j.pld.2022.11.005","DOIUrl":null,"url":null,"abstract":"<div><p>Knowledge of which biological and functional traits have, or lack, phylogenetic signal in a particular group of organisms is important to understanding the formation and functioning of biological communities. Allometric biomass models reflecting tree growth characteristics are commonly used to predict forest biomass. However, few studies have examined whether model parameters are constrained by phylogeny. Here, we use a comprehensive database (including 276 tree species) compiled from 894 allometric biomass models published in 302 articles to examine whether parameters a and b of the model <span><math><mrow><mi>W</mi><mo>=</mo><mi>a</mi><msup><mi>D</mi><mi>b</mi></msup></mrow></math></span> (where W stands for aboveground biomass, D is diameter at breast height) exhibit phylogenetic signal for all tree species as a whole and for different groups of tree species. For either model parameter, we relate difference in model parameter between different tree species to phylogenetic distance and to environmental distance between pairwise sites. Our study shows that neither model parameter exhibits phylogenetic signals (Pagel's λ and Blomberg's K both approach zero). This is the case regardless of whether all tree species in our data set were analyzed as a whole or tree species in different taxonomic groups (gymnosperm and angiosperm), leaf duration groups (evergreen and deciduous), or ecological groups (tropical, temperate and boreal) were analyzed separately. Our study also shows that difference in each parameter of the allometric biomass model is not significantly related to phylogenetic and environmental distances between tree species in different sites.</p></div>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"45 2","pages":"Pages 229-233"},"PeriodicalIF":4.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10105221/pdf/main.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Diversity","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468265922001238","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
Knowledge of which biological and functional traits have, or lack, phylogenetic signal in a particular group of organisms is important to understanding the formation and functioning of biological communities. Allometric biomass models reflecting tree growth characteristics are commonly used to predict forest biomass. However, few studies have examined whether model parameters are constrained by phylogeny. Here, we use a comprehensive database (including 276 tree species) compiled from 894 allometric biomass models published in 302 articles to examine whether parameters a and b of the model (where W stands for aboveground biomass, D is diameter at breast height) exhibit phylogenetic signal for all tree species as a whole and for different groups of tree species. For either model parameter, we relate difference in model parameter between different tree species to phylogenetic distance and to environmental distance between pairwise sites. Our study shows that neither model parameter exhibits phylogenetic signals (Pagel's λ and Blomberg's K both approach zero). This is the case regardless of whether all tree species in our data set were analyzed as a whole or tree species in different taxonomic groups (gymnosperm and angiosperm), leaf duration groups (evergreen and deciduous), or ecological groups (tropical, temperate and boreal) were analyzed separately. Our study also shows that difference in each parameter of the allometric biomass model is not significantly related to phylogenetic and environmental distances between tree species in different sites.
Plant DiversityAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.30
自引率
6.20%
发文量
1863
审稿时长
35 days
期刊介绍:
Plant Diversity (formerly Plant Diversity and Resources) is an international plant science journal that publishes substantial original research and review papers that
advance our understanding of the past and current distribution of plants,
contribute to the development of more phylogenetically accurate taxonomic classifications,
present new findings on or insights into evolutionary processes and mechanisms that are of interest to the community of plant systematic and evolutionary biologists.
While the focus of the journal is on biodiversity, ecology and evolution of East Asian flora, it is not limited to these topics. Applied evolutionary issues, such as climate change and conservation biology, are welcome, especially if they address conceptual problems. Theoretical papers are equally welcome. Preference is given to concise, clearly written papers focusing on precisely framed questions or hypotheses. Papers that are purely descriptive have a low chance of acceptance.
Fields covered by the journal include:
plant systematics and taxonomy-
evolutionary developmental biology-
reproductive biology-
phylo- and biogeography-
evolutionary ecology-
population biology-
conservation biology-
palaeobotany-
molecular evolution-
comparative and evolutionary genomics-
physiology-
biochemistry