Imdad Ali , Samiullah Burki , Jawad ur Rehman , Shafi Ullah , Ibrahim Javid , Magda H. Abdellattif , Muhammad Raza Shah
{"title":"Synthetic star shaped tetra-tailed biocompatible supramolecular amphiphile as an efficient nanocarrier for Amphotericin B","authors":"Imdad Ali , Samiullah Burki , Jawad ur Rehman , Shafi Ullah , Ibrahim Javid , Magda H. Abdellattif , Muhammad Raza Shah","doi":"10.1016/j.chemphyslip.2022.105257","DOIUrl":null,"url":null,"abstract":"<div><p>Macrocycle-based amphiphiles are capable of self-assembling into multidimensional nano-architecture with defined dimensions for various applications. Herein we report the synthesis, physio-chemical characterizations and oral drug delivery profiling of resorcinarene-based amphiphilic supramolecular macrocycle. The macrocycle was synthesized in two-step reaction and characterized using <sup>1</sup>H NMR, Mass spectrometry and IR spectroscopic techniques. The synthesized macrocycle was assessed for vesicles formation, checked for biocompatibility and then Amphotericin B (Amp-B) was entrapped in macrocycle-based vesicles. The drug loaded vesicles were characterized for shape, size, homogeneity, drug entrapment, surface charge, in-vitro release profile and stability. Amp-B loaded macrocycle based vesicles were examined in rabbits for in-vivo bioavailability and compared with plan drug suspension. The synthesized macrocycle was non-toxic in normal mouse fibroblast cells, compatible with blood and safe in mice. The drug loaded macrocycle based vesicles appeared spherical with 279.4 nm size and − 12.2 mV zeta potential loading 85.45 % drug. The drug loaded vesicles storage stability for 30 days and gastric fluid stability for 1 h were it retained nearly 90 % drug at 30th day and 83.79 % drug at 1 h in gastric fluid. Oral bioavailability of Amp-B in rabbits was markedly enhanced when delivered in synthesized macrocycle based vesicles in comparison with plan drug suspension. Results of this study indicate that the synthesized star shaped tetra-tailed supramolecular amphiphile could be used as an efficient nanocarrier for enhancing oral bioavailability of drugs with solubility and bioavailability issues like Amp-B.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"250 ","pages":"Article 105257"},"PeriodicalIF":3.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0009308422000858/pdfft?md5=5e400f18fe1b58c5009955bc928b8bed&pid=1-s2.0-S0009308422000858-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009308422000858","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Macrocycle-based amphiphiles are capable of self-assembling into multidimensional nano-architecture with defined dimensions for various applications. Herein we report the synthesis, physio-chemical characterizations and oral drug delivery profiling of resorcinarene-based amphiphilic supramolecular macrocycle. The macrocycle was synthesized in two-step reaction and characterized using 1H NMR, Mass spectrometry and IR spectroscopic techniques. The synthesized macrocycle was assessed for vesicles formation, checked for biocompatibility and then Amphotericin B (Amp-B) was entrapped in macrocycle-based vesicles. The drug loaded vesicles were characterized for shape, size, homogeneity, drug entrapment, surface charge, in-vitro release profile and stability. Amp-B loaded macrocycle based vesicles were examined in rabbits for in-vivo bioavailability and compared with plan drug suspension. The synthesized macrocycle was non-toxic in normal mouse fibroblast cells, compatible with blood and safe in mice. The drug loaded macrocycle based vesicles appeared spherical with 279.4 nm size and − 12.2 mV zeta potential loading 85.45 % drug. The drug loaded vesicles storage stability for 30 days and gastric fluid stability for 1 h were it retained nearly 90 % drug at 30th day and 83.79 % drug at 1 h in gastric fluid. Oral bioavailability of Amp-B in rabbits was markedly enhanced when delivered in synthesized macrocycle based vesicles in comparison with plan drug suspension. Results of this study indicate that the synthesized star shaped tetra-tailed supramolecular amphiphile could be used as an efficient nanocarrier for enhancing oral bioavailability of drugs with solubility and bioavailability issues like Amp-B.
期刊介绍:
Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications.
Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.