Prediction of delayed cerebral ischemia after cerebral aneurysm rupture using explainable machine learning approach.

IF 2.1 4区 医学 Q3 Medicine
Interventional Neuroradiology Pub Date : 2025-06-01 Epub Date: 2023-04-17 DOI:10.1177/15910199231170411
Reza M Taghavi, Guangming Zhu, Max Wintermark, Gabriella M Kuraitis, Eric S Sussman, Benjamin Pulli, Brook Biniam, Sophie Ostmeier, Gary K Steinberg, Jeremy J Heit
{"title":"Prediction of delayed cerebral ischemia after cerebral aneurysm rupture using explainable machine learning approach.","authors":"Reza M Taghavi, Guangming Zhu, Max Wintermark, Gabriella M Kuraitis, Eric S Sussman, Benjamin Pulli, Brook Biniam, Sophie Ostmeier, Gary K Steinberg, Jeremy J Heit","doi":"10.1177/15910199231170411","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundAneurysmal subarachnoid hemorrhage results in significant mortality and disability, which is worsened by the development of delayed cerebral ischemia. Tests to identify patients with delayed cerebral ischemia prospectively are of high interest.ObjectiveWe created a machine learning system based on clinical variables to predict delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage patients. We also determined which variables have the most impact on delayed cerebral ischemia prediction using SHapley Additive exPlanations method.Methods500 aneurysmal subarachnoid hemorrhage patients were identified and 369 met inclusion criteria: 70 patients developed delayed cerebral ischemia (delayed cerebral ischemia+) and 299 did not (delayed cerebral ischemia-). The algorithm was trained based upon age, sex, hypertension (HTN), diabetes, hyperlipidemia, congestive heart failure, coronary artery disease, smoking history, family history of aneurysm, Fisher Grade, Hunt and Hess score, and external ventricular drain placement. Random Forest was selected for this project, and prediction outcome of the algorithm was delayed cerebral ischemia+. SHapley Additive exPlanations was used to visualize each feature's contribution to the model prediction.ResultsThe Random Forest machine learning algorithm predicted delayed cerebral ischemia: accuracy 80.65% (95% CI: 72.62-88.68), area under the curve 0.780 (95% CI: 0.696-0.864), sensitivity 12.5% (95% CI: -3.7 to 28.7), specificity 94.81% (95% CI: 89.85-99.77), PPV 33.3% (95% CI: -4.39 to 71.05), and NPV 84.1% (95% CI: 76.38-91.82). SHapley Additive exPlanations value demonstrated Age, external ventricular drain placement, Fisher Grade, and Hunt and Hess score, and HTN had the highest predictive values for delayed cerebral ischemia. Lower age, absence of hypertension, higher Hunt and Hess score, higher Fisher Grade, and external ventricular drain placement increased risk of delayed cerebral ischemia.ConclusionMachine learning models based upon clinical variables predict delayed cerebral ischemia with high specificity and good accuracy.</p>","PeriodicalId":14380,"journal":{"name":"Interventional Neuroradiology","volume":" ","pages":"375-380"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12202946/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interventional Neuroradiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15910199231170411","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

BackgroundAneurysmal subarachnoid hemorrhage results in significant mortality and disability, which is worsened by the development of delayed cerebral ischemia. Tests to identify patients with delayed cerebral ischemia prospectively are of high interest.ObjectiveWe created a machine learning system based on clinical variables to predict delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage patients. We also determined which variables have the most impact on delayed cerebral ischemia prediction using SHapley Additive exPlanations method.Methods500 aneurysmal subarachnoid hemorrhage patients were identified and 369 met inclusion criteria: 70 patients developed delayed cerebral ischemia (delayed cerebral ischemia+) and 299 did not (delayed cerebral ischemia-). The algorithm was trained based upon age, sex, hypertension (HTN), diabetes, hyperlipidemia, congestive heart failure, coronary artery disease, smoking history, family history of aneurysm, Fisher Grade, Hunt and Hess score, and external ventricular drain placement. Random Forest was selected for this project, and prediction outcome of the algorithm was delayed cerebral ischemia+. SHapley Additive exPlanations was used to visualize each feature's contribution to the model prediction.ResultsThe Random Forest machine learning algorithm predicted delayed cerebral ischemia: accuracy 80.65% (95% CI: 72.62-88.68), area under the curve 0.780 (95% CI: 0.696-0.864), sensitivity 12.5% (95% CI: -3.7 to 28.7), specificity 94.81% (95% CI: 89.85-99.77), PPV 33.3% (95% CI: -4.39 to 71.05), and NPV 84.1% (95% CI: 76.38-91.82). SHapley Additive exPlanations value demonstrated Age, external ventricular drain placement, Fisher Grade, and Hunt and Hess score, and HTN had the highest predictive values for delayed cerebral ischemia. Lower age, absence of hypertension, higher Hunt and Hess score, higher Fisher Grade, and external ventricular drain placement increased risk of delayed cerebral ischemia.ConclusionMachine learning models based upon clinical variables predict delayed cerebral ischemia with high specificity and good accuracy.

使用可解释的机器学习方法预测脑动脉瘤破裂后延迟性脑缺血。
背景:动脉瘤性蛛网膜下腔出血可导致严重的死亡率和致残率,并随着迟发性脑缺血的发展而恶化。对迟发性脑缺血患者的前瞻性检测具有很高的意义。目的建立基于临床变量的机器学习系统,预测动脉瘤性蛛网膜下腔出血患者迟发性脑缺血。我们还使用SHapley加性解释方法确定了哪些变量对延迟性脑缺血预测的影响最大。方法选取500例动脉瘤性蛛网膜下腔出血患者,其中369例符合入选标准:迟发性脑缺血70例(迟发性脑缺血+),299例未发生迟发性脑缺血(迟发性脑缺血-)。算法的训练基于年龄、性别、高血压(HTN)、糖尿病、高脂血症、充血性心力衰竭、冠状动脉疾病、吸烟史、动脉瘤家族史、Fisher分级、Hunt和Hess评分以及心室外引流位置。本项目选择随机森林,算法预测结果为延迟脑缺血+。SHapley加性解释用于可视化每个特征对模型预测的贡献。结果随机森林机器学习算法预测延迟性脑缺血准确率80.65% (95% CI: 72.62 ~ 88.68),曲线下面积0.780 (95% CI: 0.696 ~ 0.864),灵敏度12.5% (95% CI: -3.7 ~ 28.7),特异性94.81% (95% CI: 89.85 ~ 99.77), PPV 33.3% (95% CI: -4.39 ~ 71.05), NPV 84.1% (95% CI: 76.38 ~ 91.82)。SHapley加性解释值显示,年龄、外脑室引流位置、Fisher分级、Hunt and Hess评分和HTN对延迟性脑缺血的预测价值最高。年龄较低、无高血压、较高的Hunt和Hess评分、较高的Fisher分级以及室外引流放置增加了迟发性脑缺血的风险。结论基于临床变量的机器学习模型预测延迟性脑缺血特异性高,准确性好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
11.80%
发文量
192
审稿时长
6-12 weeks
期刊介绍: Interventional Neuroradiology (INR) is a peer-reviewed clinical practice journal documenting the current state of interventional neuroradiology worldwide. INR publishes original clinical observations, descriptions of new techniques or procedures, case reports, and articles on the ethical and social aspects of related health care. Original research published in INR is related to the practice of interventional neuroradiology...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信