Christine Joy I. Bulaon , Hongyan Sun , Ashwini Malla , Waranyoo Phoolcharoen
{"title":"Therapeutic efficacy of plant-produced Nivolumab in transgenic C57BL/6-hPD-1 mouse implanted with MC38 colon cancer","authors":"Christine Joy I. Bulaon , Hongyan Sun , Ashwini Malla , Waranyoo Phoolcharoen","doi":"10.1016/j.btre.2023.e00794","DOIUrl":null,"url":null,"abstract":"<div><p>The therapeutic blockade of inhibitory PD-1 signaling has emerged as an effective approach for cancer immunotherapy. Nivolumab (Opdivo®), a monoclonal antibody (mAb) targeting the PD-1 immune checkpoint, is approved for treatment of several cancer indications. It functions by blocking the PD-1-mediated T-cell inhibition thus reinstating anticancer immune responses. Tremendous advances in plant biotechnology offer an alternative and economical strategy to produce therapeutic mAbs for immune-based therapies. In this study, recombinant anti-PD-1 Nivolumab was produced in <em>Nicotiana benthamiana</em> and the plant-produced anti-PD-1 mAb was exploited for cancer treatment in syngeneic mice model C57BL/6 mice that were used to test the antitumor efficacy of plant produced Nivolumab, along with commercial Opdivo®. C57BL/6 syngeneic mice treated with plant produced anti-PD-1 mAb exhibited reduction in the growth of established MC38 tumors. The plant produced Nivolumab treatment showed 82.9% antitumor effect in decreasing the tumor volume along with 50% tumor-free mice, whereas Opdivo® showed 90.26% reduction in volume without any tumor-free mice. Finally, plant-derived anti-PD-1 therapy was also well tolerated in tumor-bearing mice that correlated with no significant body weight changes. Overall, our plant-produced Nivolumab elicits significant inhibition of tumor growth <em>in vivo</em> and provides a proof-of-concept for the production of immunotherapy targeting PD-1.</p></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"38 ","pages":"Article e00794"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10090705/pdf/main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215017X23000140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0
Abstract
The therapeutic blockade of inhibitory PD-1 signaling has emerged as an effective approach for cancer immunotherapy. Nivolumab (Opdivo®), a monoclonal antibody (mAb) targeting the PD-1 immune checkpoint, is approved for treatment of several cancer indications. It functions by blocking the PD-1-mediated T-cell inhibition thus reinstating anticancer immune responses. Tremendous advances in plant biotechnology offer an alternative and economical strategy to produce therapeutic mAbs for immune-based therapies. In this study, recombinant anti-PD-1 Nivolumab was produced in Nicotiana benthamiana and the plant-produced anti-PD-1 mAb was exploited for cancer treatment in syngeneic mice model C57BL/6 mice that were used to test the antitumor efficacy of plant produced Nivolumab, along with commercial Opdivo®. C57BL/6 syngeneic mice treated with plant produced anti-PD-1 mAb exhibited reduction in the growth of established MC38 tumors. The plant produced Nivolumab treatment showed 82.9% antitumor effect in decreasing the tumor volume along with 50% tumor-free mice, whereas Opdivo® showed 90.26% reduction in volume without any tumor-free mice. Finally, plant-derived anti-PD-1 therapy was also well tolerated in tumor-bearing mice that correlated with no significant body weight changes. Overall, our plant-produced Nivolumab elicits significant inhibition of tumor growth in vivo and provides a proof-of-concept for the production of immunotherapy targeting PD-1.
Biotechnology ReportsImmunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
15.80
自引率
0.00%
发文量
79
审稿时长
55 days
期刊介绍:
Biotechnology Reports covers all aspects of Biotechnology particularly those reports that are useful and informative and that will be of value to other researchers in related fields. Biotechnology Reports loves ground breaking science, but will also accept good science that can be of use to the biotechnology community. The journal maintains a high quality peer review where submissions are considered on the basis of scientific validity and technical quality. Acceptable paper types are research articles (short or full communications), methods, mini-reviews, and commentaries in the following areas: Healthcare and pharmaceutical biotechnology Agricultural and food biotechnology Environmental biotechnology Molecular biology, cell and tissue engineering and synthetic biology Industrial biotechnology, biofuels and bioenergy Nanobiotechnology Bioinformatics & systems biology New processes and products in biotechnology, bioprocess engineering.