Orbit Structure of Grassmannian G2,m and a Decoder for Grassmann Code C(2, m)

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Fernando L. Piñero;Prasant Singh
{"title":"Orbit Structure of Grassmannian G2,m and a Decoder for Grassmann Code C(2, m)","authors":"Fernando L. Piñero;Prasant Singh","doi":"10.1109/TIT.2022.3213568","DOIUrl":null,"url":null,"abstract":"In this article, we consider decoding Grassmann codes, linear codes associated to the Grassmannian and its embedding in a projective space. We look at the orbit structure of Grassmannian arising from the multiplicative group \n<inline-formula> <tex-math>${\\mathbb {F}}_{q^{m}}^{*}$ </tex-math></inline-formula>\n in \n<inline-formula> <tex-math>$GL_{m}(q)$ </tex-math></inline-formula>\n. We project the corresponding Grassmann code onto these orbits to obtain a subcode of a \n<inline-formula> <tex-math>$q$ </tex-math></inline-formula>\n–ary Reed-Solomon code. We prove that some of these projections contain an information set of the parent Grassmann code. By improving the decoding capacity of Peterson’s decoding algorithm for the projected subcodes, we prove that one can correct up to \n<inline-formula> <tex-math>$\\lfloor (d-1)/2\\rfloor $ </tex-math></inline-formula>\n errors for Grassmann code, where \n<inline-formula> <tex-math>$d$ </tex-math></inline-formula>\n is the minimum distance of Grassmann code.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"69 3","pages":"1509-1520"},"PeriodicalIF":2.2000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9915608/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we consider decoding Grassmann codes, linear codes associated to the Grassmannian and its embedding in a projective space. We look at the orbit structure of Grassmannian arising from the multiplicative group ${\mathbb {F}}_{q^{m}}^{*}$ in $GL_{m}(q)$ . We project the corresponding Grassmann code onto these orbits to obtain a subcode of a $q$ –ary Reed-Solomon code. We prove that some of these projections contain an information set of the parent Grassmann code. By improving the decoding capacity of Peterson’s decoding algorithm for the projected subcodes, we prove that one can correct up to $\lfloor (d-1)/2\rfloor $ errors for Grassmann code, where $d$ is the minimum distance of Grassmann code.
格拉斯曼G2,m的轨道结构及格拉斯曼码C(2, m)的解码器
在本文中,我们考虑解码格拉斯曼码,与格拉斯曼码相关的线性码及其在射影空间中的嵌入。我们观察由$GL_{m}(q)$中的乘法群${\mathbb {F}}_{q^{m}}^{*}$产生的Grassmannian轨道结构。我们将相应的Grassmann码投影到这些轨道上,得到$q$ -ary Reed-Solomon码的子码。我们证明了其中一些投影包含了父格拉斯曼码的信息集。通过改进Peterson译码算法对投影子码的译码能力,我们证明了可以对Grassmann码纠正高达$\lfloor (d-1)/2\rfloor $的错误,其中$d$为Grassmann码的最小距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信