Farahnaz Karami, Mohammad Ghorbani, Alireza Sadeghi Mahoonak, Alireza Pourhossein, Ahmad Bagheri, Reza Khodarahmi
{"title":"Increasing Antioxidant Activity in Food Waste Extracts by β-Glucosidase.","authors":"Farahnaz Karami, Mohammad Ghorbani, Alireza Sadeghi Mahoonak, Alireza Pourhossein, Ahmad Bagheri, Reza Khodarahmi","doi":"10.17113/ftb.60.04.22.7443","DOIUrl":null,"url":null,"abstract":"<p><strong>Research background: </strong>Food by-products such as onion peels and olive leaves are rich in bioactive compounds applicable as natural and low-cost sources of antioxidants. Still, these compounds mainly exist in glycosylated form. Often, hydrolysis of glycoside compounds increases their antioxidant activity and health benefits. However, not many studies have been done concerning the β-glucosidase effect, specifically from <i>Aspergillus niger</i>, on glycosylated compounds within these by-products. Also, changes in the antioxidant activity of the mentioned by-products under the effect of β-glucosidase have not been reported yet. Therefore, this study considers the effect of <i>A. niger</i> β-glucosidase on glucoside compounds and the antioxidant activity of onion peel and olive leaf extracts.</p><p><strong>Experimental approach: </strong>The antioxidant activity of the extracts was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. Also, glucose, total phenolic and flavonoid contents were measured. Moreover, TLC and HPLC analyses were performed before and after the enzymatic hydrolysis.</p><p><strong>Results and conclusions: </strong>The obtained results showed an increase in the extract antioxidant activity after treatment. Also, β-glucosidase increased the glucose content of the extracts. The thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) results showed the β-glucosidase efficacy to hydrolyze quercetin glucosides in onion peel extract, and the quercetin concentration increased from (0.48±0.04) mg/mL in the untreated extract to (1.26±0.03) mg/mL in the treated extract (0.5% <i>m</i>/<i>V</i>) after 3 h of enzymatic hydrolysis at 45 °C. Also, the content of quercetin-3-O-glucoside increased considerably from (1.8±0.1) to (54±9) µg/mL following the enzyme treatment. Moreover, oleuropein in olive leaf extract (1% <i>m</i>/<i>V</i>) was hydrolyzed completely from (0.382±0.016) to 0 mg/mL by β-glucosidase for 24 h at 50 °C.</p><p><strong>Novelty and scientific contribution: </strong>This study showed that <i>A. niger</i> β-glucosidase, as a stable enzyme, hydrolyzed quercetin and oleuropein glycosides in onion peel and olive leaf extracts. Thus, <i>A. niger</i> β-glucosidase is a good candidate for processing the food waste and extracting valuable bioactive compounds. Also, the treated extracts with higher antioxidant and biological activity, and without bitter taste can be applicable as potent, natural and cost-effective antioxidants in the food industry.</p>","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9901336/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Technology and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17113/ftb.60.04.22.7443","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Research background: Food by-products such as onion peels and olive leaves are rich in bioactive compounds applicable as natural and low-cost sources of antioxidants. Still, these compounds mainly exist in glycosylated form. Often, hydrolysis of glycoside compounds increases their antioxidant activity and health benefits. However, not many studies have been done concerning the β-glucosidase effect, specifically from Aspergillus niger, on glycosylated compounds within these by-products. Also, changes in the antioxidant activity of the mentioned by-products under the effect of β-glucosidase have not been reported yet. Therefore, this study considers the effect of A. niger β-glucosidase on glucoside compounds and the antioxidant activity of onion peel and olive leaf extracts.
Experimental approach: The antioxidant activity of the extracts was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. Also, glucose, total phenolic and flavonoid contents were measured. Moreover, TLC and HPLC analyses were performed before and after the enzymatic hydrolysis.
Results and conclusions: The obtained results showed an increase in the extract antioxidant activity after treatment. Also, β-glucosidase increased the glucose content of the extracts. The thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) results showed the β-glucosidase efficacy to hydrolyze quercetin glucosides in onion peel extract, and the quercetin concentration increased from (0.48±0.04) mg/mL in the untreated extract to (1.26±0.03) mg/mL in the treated extract (0.5% m/V) after 3 h of enzymatic hydrolysis at 45 °C. Also, the content of quercetin-3-O-glucoside increased considerably from (1.8±0.1) to (54±9) µg/mL following the enzyme treatment. Moreover, oleuropein in olive leaf extract (1% m/V) was hydrolyzed completely from (0.382±0.016) to 0 mg/mL by β-glucosidase for 24 h at 50 °C.
Novelty and scientific contribution: This study showed that A. niger β-glucosidase, as a stable enzyme, hydrolyzed quercetin and oleuropein glycosides in onion peel and olive leaf extracts. Thus, A. niger β-glucosidase is a good candidate for processing the food waste and extracting valuable bioactive compounds. Also, the treated extracts with higher antioxidant and biological activity, and without bitter taste can be applicable as potent, natural and cost-effective antioxidants in the food industry.
期刊介绍:
Food Technology and Biotechnology (FTB) is a diamond open access, peer-reviewed international quarterly scientific journal that publishes papers covering a wide range of topics, including molecular biology, genetic engineering, biochemistry, microbiology, biochemical engineering and biotechnological processing, food science, analysis of food ingredients and final products, food processing and technology, oenology and waste treatment.
The Journal is published by the University of Zagreb, Faculty of Food Technology and Biotechnology, Croatia. It is an official journal of Croatian Society of Biotechnology and Slovenian Microbiological Society, financed by the Croatian Ministry of Science and Education, and supported by the Croatian Academy of Sciences and Arts.