Ivana Vrca, Dina Ramić, Željana Fredotović, Sonja Smole Možina, Ivica Blažević, Tea Bilušić
{"title":"Chemical Composition and Biological Activity of Essential Oil and Extract from the Seeds of <i>Tropaeolum majus</i> L. var. <i>altum</i>.","authors":"Ivana Vrca, Dina Ramić, Željana Fredotović, Sonja Smole Možina, Ivica Blažević, Tea Bilušić","doi":"10.17113/ftb.60.04.22.7667","DOIUrl":null,"url":null,"abstract":"<p><strong>Research background: </strong>Plant <i>Tropaeolum majus</i> L. (garden nasturtium) belongs to the family Tropaeolaceae and contains benzyl glucosinolate. The breakdown product of benzyl glucosinolate, benzyl isothiocyanate (BITC), exhibits various biological activities such as antiproliferative, antibacterial and antiinflammatory. In order to optimize the content of biologically active volatile compounds in plant extract and essential oil, the use of appropriate extraction technique has a crucial role.</p><p><strong>Experimental approach: </strong>The current study investigates the effect of two modern extraction methods, microwave-assisted distillation (MAD) and microwave hydrodiffusion and gravity (MHG), on the chemical composition of volatile components present in the essential oil and extract of garden nasturtium (<i>T. majus</i> L. <i>var. altum</i>) seeds. Investigation of the biological activity of samples (essential oil, extract and pure compounds) was focused on the antiproliferative effect against different cancer cell lines: cervical cancer cell line (HeLa), human colon cancer cell line (HCT116) and human osteosarcoma cell line (U2OS), and the antibacterial activity which was evaluated against the growth and adhesion of <i>Staphylococcus aureus</i> and <i>Escherichia coli</i> to polystyrene surface.</p><p><strong>Results and conclusions: </strong>Essential oil and extract of garden nasturtium (<i>T. majus</i>) seeds were isolated by two extraction techniques: MAD and MHG. BITC and benzyl cyanide (BCN) present in the extract were identified by gas chromatography-mass spectrometry. Essential oil of <i>T. majus</i> showed higher antiproliferative activity (IC<sub>50</sub><5 µg/mL) than <i>T. majus</i> extract (IC<sub>50</sub><27 µg/mL) against three cancer cell lines: HeLa, HCT116 and U2OS. BITC showed much higher inhibitory effect on all tested cells than BCN. The essential oil and extract of <i>T. majus</i> showed strong antimicrobial activity against <i>S. aureus</i> and <i>E. coli</i>.</p><p><strong>Novelty and scientific contribution: </strong>This work represents the first comparative report on the antiproliferative activity of the essential oil and extract of <i>T. majus</i> seeds, BITC and BCN against HeLa, HCT116 and U2OS cells as well as their antimicrobial activity against <i>S. aureus</i> and <i>E. coli</i>. This study demonstrates that the essential oil of <i>T. majus</i> seeds exhibits stronger antiproliferative and antimicrobial activity than the plant extract.</p>","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9901342/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Technology and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17113/ftb.60.04.22.7667","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Research background: Plant Tropaeolum majus L. (garden nasturtium) belongs to the family Tropaeolaceae and contains benzyl glucosinolate. The breakdown product of benzyl glucosinolate, benzyl isothiocyanate (BITC), exhibits various biological activities such as antiproliferative, antibacterial and antiinflammatory. In order to optimize the content of biologically active volatile compounds in plant extract and essential oil, the use of appropriate extraction technique has a crucial role.
Experimental approach: The current study investigates the effect of two modern extraction methods, microwave-assisted distillation (MAD) and microwave hydrodiffusion and gravity (MHG), on the chemical composition of volatile components present in the essential oil and extract of garden nasturtium (T. majus L. var. altum) seeds. Investigation of the biological activity of samples (essential oil, extract and pure compounds) was focused on the antiproliferative effect against different cancer cell lines: cervical cancer cell line (HeLa), human colon cancer cell line (HCT116) and human osteosarcoma cell line (U2OS), and the antibacterial activity which was evaluated against the growth and adhesion of Staphylococcus aureus and Escherichia coli to polystyrene surface.
Results and conclusions: Essential oil and extract of garden nasturtium (T. majus) seeds were isolated by two extraction techniques: MAD and MHG. BITC and benzyl cyanide (BCN) present in the extract were identified by gas chromatography-mass spectrometry. Essential oil of T. majus showed higher antiproliferative activity (IC50<5 µg/mL) than T. majus extract (IC50<27 µg/mL) against three cancer cell lines: HeLa, HCT116 and U2OS. BITC showed much higher inhibitory effect on all tested cells than BCN. The essential oil and extract of T. majus showed strong antimicrobial activity against S. aureus and E. coli.
Novelty and scientific contribution: This work represents the first comparative report on the antiproliferative activity of the essential oil and extract of T. majus seeds, BITC and BCN against HeLa, HCT116 and U2OS cells as well as their antimicrobial activity against S. aureus and E. coli. This study demonstrates that the essential oil of T. majus seeds exhibits stronger antiproliferative and antimicrobial activity than the plant extract.
期刊介绍:
Food Technology and Biotechnology (FTB) is a diamond open access, peer-reviewed international quarterly scientific journal that publishes papers covering a wide range of topics, including molecular biology, genetic engineering, biochemistry, microbiology, biochemical engineering and biotechnological processing, food science, analysis of food ingredients and final products, food processing and technology, oenology and waste treatment.
The Journal is published by the University of Zagreb, Faculty of Food Technology and Biotechnology, Croatia. It is an official journal of Croatian Society of Biotechnology and Slovenian Microbiological Society, financed by the Croatian Ministry of Science and Education, and supported by the Croatian Academy of Sciences and Arts.