Isolation, Identification, and Fermentation Medium Optimization of a Caproic Acid‑Producing Enterococcus casseliflavus Strain from Pit Mud of Chinese Strong Flavor Baijiu Ecosystem.
Hao Luo, Tao Li, Jia Zheng, Kaizheng Zhang, Zongwei Qiao, Huibo Luo, Wei Zou
{"title":"Isolation, Identification, and Fermentation Medium Optimization of a Caproic Acid‑Producing <i>Enterococcus casseliflavus</i> Strain from Pit Mud of Chinese Strong Flavor Baijiu Ecosystem.","authors":"Hao Luo, Tao Li, Jia Zheng, Kaizheng Zhang, Zongwei Qiao, Huibo Luo, Wei Zou","doi":"10.33073/pjm-2022-052","DOIUrl":null,"url":null,"abstract":"<p><p>Caproic acid is the precursor material of ethyl hexanoate, a representative flavor substance in strong flavor baijiu (SFB). Increasing the content of caproic acid in SFB helps to improve its quality. In the present study, caproic acid-producing bacteria from the pit mud of an SFB ecosystem were isolated, purified, and characterized. Strain BF-1 with the highest caproic acid yield (0.88 g/l) was selected. The morphological and molecular identification analysis showed that strain BF-1 was <i>Enterococcus casseliflavus</i>. The genome of <i>E. casseliflavus</i> BF-1 was sequenced and was found to be 2,968,377 bp in length with 3,270 open reading frames (ORFs). The caproic acid biosynthesis pathway in <i>E. casseliflavus</i> BF-1 was predicted based on the KAAS annotation. The virulence factors in the genome of strain BF-1 were annotated, which showed that <i>E. casseliflavus</i> BF-1 is safe at the genetic level. After adding essential nutrients based on the KAAS annotation, the optimum medium conditions for acid production by strain BF-1 were obtained by performing orthogonal experiments. The caproic acid yield of strain BF-1 reached 3.03 g/l, which was 3.44-fold higher than the initial yield. The optimized fer- mentation of caproic acid production by BF-1 was reported for the first time. The strain could be further used to regulate the ecosystem in baijiu production to improve its quality.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7f/de/pjm-71-563.PMC9944964.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.33073/pjm-2022-052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Caproic acid is the precursor material of ethyl hexanoate, a representative flavor substance in strong flavor baijiu (SFB). Increasing the content of caproic acid in SFB helps to improve its quality. In the present study, caproic acid-producing bacteria from the pit mud of an SFB ecosystem were isolated, purified, and characterized. Strain BF-1 with the highest caproic acid yield (0.88 g/l) was selected. The morphological and molecular identification analysis showed that strain BF-1 was Enterococcus casseliflavus. The genome of E. casseliflavus BF-1 was sequenced and was found to be 2,968,377 bp in length with 3,270 open reading frames (ORFs). The caproic acid biosynthesis pathway in E. casseliflavus BF-1 was predicted based on the KAAS annotation. The virulence factors in the genome of strain BF-1 were annotated, which showed that E. casseliflavus BF-1 is safe at the genetic level. After adding essential nutrients based on the KAAS annotation, the optimum medium conditions for acid production by strain BF-1 were obtained by performing orthogonal experiments. The caproic acid yield of strain BF-1 reached 3.03 g/l, which was 3.44-fold higher than the initial yield. The optimized fer- mentation of caproic acid production by BF-1 was reported for the first time. The strain could be further used to regulate the ecosystem in baijiu production to improve its quality.