Laure Mazzola , François Mauguière , Florian Chouchou
{"title":"Central control of cardiac activity as assessed by intra-cerebral recordings and stimulations","authors":"Laure Mazzola , François Mauguière , Florian Chouchou","doi":"10.1016/j.neucli.2023.102849","DOIUrl":null,"url":null,"abstract":"<div><p>Some of the most important integrative control centers for the autonomic nervous system are located in the brainstem and the hypothalamus. However, growing recent neuroimaging evidence support that a set of cortical regions, named the central autonomic network (CAN), is involved in autonomic control and seems to play a major role in continuous autonomic cardiac adjustments to high-level emotional, cognitive or sensorimotor cortical activities. Intracranial explorations during stereo-electroencephalography (SEEG) offer a unique opportunity to address the question of the brain regions involved in heart-brain interaction, by studying: (i) direct cardiac effects produced by the electrical stimulation of specific brain areas; (ii) epileptic seizures inducing cardiac modifications; (iii) cortical regions involved in cardiac interoception and source of cardiac evoked potentials. In this review, we detail the available data assessing cardiac central autonomic regulation using SEEG, address the strengths and also the limitations of this technique in this context, and discuss perspectives. The main cortical regions that emerge from SEEG studies as being involved in cardiac autonomic control are the insula and regions belonging to the limbic system: the amygdala, the hippocampus, and the anterior and mid-cingulate. Although many questions remain, SEEG studies have already demonstrated afferent and efferent interactions between the CAN and the heart. Future studies in SEEG should integrate these afferent and efferent dimensions as well as their interaction with other cortical networks to better understand the functional heart-brain interaction.</p></div>","PeriodicalId":19134,"journal":{"name":"Neurophysiologie Clinique/Clinical Neurophysiology","volume":"53 2","pages":"Article 102849"},"PeriodicalIF":2.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophysiologie Clinique/Clinical Neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0987705323000060","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Some of the most important integrative control centers for the autonomic nervous system are located in the brainstem and the hypothalamus. However, growing recent neuroimaging evidence support that a set of cortical regions, named the central autonomic network (CAN), is involved in autonomic control and seems to play a major role in continuous autonomic cardiac adjustments to high-level emotional, cognitive or sensorimotor cortical activities. Intracranial explorations during stereo-electroencephalography (SEEG) offer a unique opportunity to address the question of the brain regions involved in heart-brain interaction, by studying: (i) direct cardiac effects produced by the electrical stimulation of specific brain areas; (ii) epileptic seizures inducing cardiac modifications; (iii) cortical regions involved in cardiac interoception and source of cardiac evoked potentials. In this review, we detail the available data assessing cardiac central autonomic regulation using SEEG, address the strengths and also the limitations of this technique in this context, and discuss perspectives. The main cortical regions that emerge from SEEG studies as being involved in cardiac autonomic control are the insula and regions belonging to the limbic system: the amygdala, the hippocampus, and the anterior and mid-cingulate. Although many questions remain, SEEG studies have already demonstrated afferent and efferent interactions between the CAN and the heart. Future studies in SEEG should integrate these afferent and efferent dimensions as well as their interaction with other cortical networks to better understand the functional heart-brain interaction.
期刊介绍:
Neurophysiologie Clinique / Clinical Neurophysiology (NCCN) is the official organ of the French Society of Clinical Neurophysiology (SNCLF). This journal is published 6 times a year, and is aimed at an international readership, with articles written in English. These can take the form of original research papers, comprehensive review articles, viewpoints, short communications, technical notes, editorials or letters to the Editor. The theme is the neurophysiological investigation of central or peripheral nervous system or muscle in healthy humans or patients. The journal focuses on key areas of clinical neurophysiology: electro- or magneto-encephalography, evoked potentials of all modalities, electroneuromyography, sleep, pain, posture, balance, motor control, autonomic nervous system, cognition, invasive and non-invasive neuromodulation, signal processing, bio-engineering, functional imaging.