Arsen Batagov, Rinkoo Dalan, Andrew Wu, Wenbin Lai, Colin S Tan, Frank Eisenhaber
{"title":"Generalized metabolic flux analysis framework provides mechanism-based predictions of ophthalmic complications in type 2 diabetes patients.","authors":"Arsen Batagov, Rinkoo Dalan, Andrew Wu, Wenbin Lai, Colin S Tan, Frank Eisenhaber","doi":"10.1007/s13755-023-00218-x","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic metabolic diseases arise from changes in metabolic fluxes through biomolecular pathways and gene networks accumulated over the lifetime of an individual. While clinical and biochemical profiles present just real-time snapshots of the patients' health, efficient computation models of the pathological disturbance of biomolecular processes are required to achieve individualized mechanistic insights into disease progression. Here, we describe the Generalized metabolic flux analysis (GMFA) for addressing this gap. Suitably grouping individual metabolites/fluxes into pools simplifies the analysis of the resulting more coarse-grain network. We also map non-metabolic clinical modalities onto the network with additional edges. Instead of using the time coordinate, the system status (metabolite concentrations and fluxes) is quantified as function of a generalized extent variable (a coordinate in the space of generalized metabolites) that represents the system's coordinate along its evolution path and evaluates the degree of change between any two states on that path. We applied GMFA to analyze Type 2 Diabetes Mellitus (T2DM) patients from two cohorts: EVAS (289 patients from Singapore) and NHANES (517) from the USA. Personalized systems biology models (digital twins) were constructed. We deduced disease dynamics from the individually parameterized metabolic network and predicted the evolution path of the metabolic health state. For each patient, we obtained an individual description of disease dynamics and predict an evolution path of the metabolic health state. Our predictive models achieve an ROC-AUC in the range 0.79-0.95 (sensitivity 80-92%, specificity 62-94%) in identifying phenotypes at the baseline and predicting future development of diabetic retinopathy and cataract progression among T2DM patients within 3 years from the baseline. The GMFA method is a step towards realizing the ultimate goal to develop practical predictive computational models for diagnostics based on systems biology. This tool has potential use in chronic disease management in medical practice.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13755-023-00218-x.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"18"},"PeriodicalIF":3.4000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060506/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-023-00218-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Chronic metabolic diseases arise from changes in metabolic fluxes through biomolecular pathways and gene networks accumulated over the lifetime of an individual. While clinical and biochemical profiles present just real-time snapshots of the patients' health, efficient computation models of the pathological disturbance of biomolecular processes are required to achieve individualized mechanistic insights into disease progression. Here, we describe the Generalized metabolic flux analysis (GMFA) for addressing this gap. Suitably grouping individual metabolites/fluxes into pools simplifies the analysis of the resulting more coarse-grain network. We also map non-metabolic clinical modalities onto the network with additional edges. Instead of using the time coordinate, the system status (metabolite concentrations and fluxes) is quantified as function of a generalized extent variable (a coordinate in the space of generalized metabolites) that represents the system's coordinate along its evolution path and evaluates the degree of change between any two states on that path. We applied GMFA to analyze Type 2 Diabetes Mellitus (T2DM) patients from two cohorts: EVAS (289 patients from Singapore) and NHANES (517) from the USA. Personalized systems biology models (digital twins) were constructed. We deduced disease dynamics from the individually parameterized metabolic network and predicted the evolution path of the metabolic health state. For each patient, we obtained an individual description of disease dynamics and predict an evolution path of the metabolic health state. Our predictive models achieve an ROC-AUC in the range 0.79-0.95 (sensitivity 80-92%, specificity 62-94%) in identifying phenotypes at the baseline and predicting future development of diabetic retinopathy and cataract progression among T2DM patients within 3 years from the baseline. The GMFA method is a step towards realizing the ultimate goal to develop practical predictive computational models for diagnostics based on systems biology. This tool has potential use in chronic disease management in medical practice.
Supplementary information: The online version contains supplementary material available at 10.1007/s13755-023-00218-x.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.