Juhee Kim, Junyue Wang, Daniel C. Ashley, Virender K. Sharma*, Ching-Hua Huang*
{"title":"Enhanced Degradation of Micropollutants in a Peracetic Acid–Fe(III) System with Picolinic Acid","authors":"Juhee Kim, Junyue Wang, Daniel C. Ashley, Virender K. Sharma*, Ching-Hua Huang*","doi":"10.1021/acs.est.1c08311","DOIUrl":null,"url":null,"abstract":"<p >Activation of peracetic acid (PAA) with iron species is an emerging advanced oxidation process (AOP). This study investigates the use of the chelating agent picolinic acid (PICA) to extend the pH range and enhance the performance of the PAA–Fe(III) AOP. Compared to the PAA–Fe(III) system, the PAA–Fe(III)–PICA system degrades various micropollutants (MPs: methylene blue, naproxen, sulfamethoxazole, carbamazepine, trimethoprim, diclofenac, and bisphenol-A) much more rapidly at higher pH, achieving almost complete removal of parent compounds within 10 min. PAA significantly outperforms the coexistent H<sub>2</sub>O<sub>2</sub> and is the key oxidant for rapid compound degradation. Other chelating agents, EDTA, NTA, citric acid, proline, and nicotinic acid, could not enhance MP degradation in the PAA–Fe(III) system, while 2,6-pyridinedicarboxylic acid with a structure similar to PICA moderately enhanced MP degradation. Experiments with scavengers (<i>tert</i>-butyl alcohol and methyl phenyl sulfoxide) and a probe compound (benzoic acid) confirmed that high-valent iron species [Fe(IV) and/or Fe(V)], rather than radicals, are the major reactive species contributing to MP degradation. The oxidation products of methylene blue, naproxen, and sulfamethoxazole by PAA–Fe(III)–PICA were characterized and supported the proposed mechanism. This work demonstrates that PICA is an effective complexing ligand to assist the Fenton reaction of PAA by extending the applicable pH range and accelerating the catalytic ability of Fe(III).</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"56 7","pages":"4437–4446"},"PeriodicalIF":11.3000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.1c08311","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 26
Abstract
Activation of peracetic acid (PAA) with iron species is an emerging advanced oxidation process (AOP). This study investigates the use of the chelating agent picolinic acid (PICA) to extend the pH range and enhance the performance of the PAA–Fe(III) AOP. Compared to the PAA–Fe(III) system, the PAA–Fe(III)–PICA system degrades various micropollutants (MPs: methylene blue, naproxen, sulfamethoxazole, carbamazepine, trimethoprim, diclofenac, and bisphenol-A) much more rapidly at higher pH, achieving almost complete removal of parent compounds within 10 min. PAA significantly outperforms the coexistent H2O2 and is the key oxidant for rapid compound degradation. Other chelating agents, EDTA, NTA, citric acid, proline, and nicotinic acid, could not enhance MP degradation in the PAA–Fe(III) system, while 2,6-pyridinedicarboxylic acid with a structure similar to PICA moderately enhanced MP degradation. Experiments with scavengers (tert-butyl alcohol and methyl phenyl sulfoxide) and a probe compound (benzoic acid) confirmed that high-valent iron species [Fe(IV) and/or Fe(V)], rather than radicals, are the major reactive species contributing to MP degradation. The oxidation products of methylene blue, naproxen, and sulfamethoxazole by PAA–Fe(III)–PICA were characterized and supported the proposed mechanism. This work demonstrates that PICA is an effective complexing ligand to assist the Fenton reaction of PAA by extending the applicable pH range and accelerating the catalytic ability of Fe(III).
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.