p-adic vertex operator algebras.

IF 0.6 Q3 MATHEMATICS
Cameron Franc, Geoffrey Mason
{"title":"<i>p</i>-adic vertex operator algebras.","authors":"Cameron Franc,&nbsp;Geoffrey Mason","doi":"10.1007/s40993-023-00433-1","DOIUrl":null,"url":null,"abstract":"<p><p>We postulate axioms for a chiral half of a nonarchimedean 2-dimensional bosonic conformal field theory, that is, a vertex operator algebra in which a <i>p</i>-adic Banach space replaces the traditional Hilbert space. We study some consequences of our axioms leading to the construction of various examples, including <i>p</i>-adic commutative Banach rings and <i>p</i>-adic versions of the Virasoro, Heisenberg, and the Moonshine module vertex operator algebras. Serre <i>p</i>-adic modular forms occur naturally in some of these examples as limits of classical 1-point functions.</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10071837/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40993-023-00433-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We postulate axioms for a chiral half of a nonarchimedean 2-dimensional bosonic conformal field theory, that is, a vertex operator algebra in which a p-adic Banach space replaces the traditional Hilbert space. We study some consequences of our axioms leading to the construction of various examples, including p-adic commutative Banach rings and p-adic versions of the Virasoro, Heisenberg, and the Moonshine module vertex operator algebras. Serre p-adic modular forms occur naturally in some of these examples as limits of classical 1-point functions.

p进顶点算子代数。
我们假设了非阿基米德二维玻色子共形场理论的手性半部分的公理,即一个用p进巴拿赫空间代替传统希尔伯特空间的顶点算子代数。我们研究了我们的公理的一些结果,这些结果导致了各种例子的构造,包括p进交换Banach环和Virasoro、Heisenberg和Moonshine模顶点算子代数的p进版本。Serre p进模形式作为经典1点函数的极限在这些例子中自然出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
12.50%
发文量
88
期刊介绍: Research in Number Theory is an international, peer-reviewed Hybrid Journal covering the scope of the mathematical disciplines of Number Theory and Arithmetic Geometry. The Mission of the Journal is to publish high-quality original articles that make a significant contribution to these research areas. It will also publish shorter research communications (Letters) covering nascent research in some of the burgeoning areas of number theory research. This journal publishes the highest quality papers in all of the traditional areas of number theory research, and it actively seeks to publish seminal papers in the most emerging and interdisciplinary areas here as well. Research in Number Theory also publishes comprehensive reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信