{"title":"An <i>in vitro</i> study of a custom-made device for thermoregulation of the mixing slab on the setting properties of zinc oxide eugenol impression paste.","authors":"Divyansh Sinha, Laasya Shivanand Shettigar, Kishore Ginjupalli, Nagaraja P Upadhya, Abhishek Bhagat","doi":"10.4103/jips.jips_337_22","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>The present study was aimed to investigate the functional relationship between the mixing temperature and properties of a commercially available zinc oxide eugenol impression paste (ZnOE paste).</p><p><strong>Settings and design: </strong>In-vitro study.</p><p><strong>Materials and methods: </strong>A custom-made simulated mixing device was indigenously designed to maintain different mixing temperatures, simulating cold, ambient, and hot weather. A commercially available ZnOE paste was mixed according to the manufacturer's instructions in the simulated mixing device at the temperatures ranging from 10°C to 50°C. Initial setting time and consistency were measured according to A. D. A. Specification No. 16 (n = 8). A stainless-steel die having 25, 50, and 75 μm lines was used for surface detail reproduction. Detail reproduction of the stone casts of the impressions was evaluated with a stereomicroscope at 30 magnification (n = 8). The shear bond strength of ZnOE paste to self-cure acrylic tray resin was measured by using the UTM at a crosshead speed of 0.5 mm/min (n = 8).</p><p><strong>Statistical analysis used: </strong>Data were analyzed by using one-way analysis of variance (ANOVA) and Tukey's post hoc tests at a confidence interval of 95% (alpha =0.05).</p><p><strong>Results: </strong>Initial setting time, consistency, and detail reproduction of the ZnOE paste were affected by the mixing temperature (P < 0.001). Mixing ZnOE paste at a lower temperature of 10°C and higher temperatures of 40°C and 50°C resulted in shorter initial setting time, thicker consistency, and poor detail reproduction. However, no significant difference was obtained in the shear bond strength among the different mixing temperatures evaluated (P > 0.05).</p><p><strong>Conclusion: </strong>Based on this in vitro study, it is advisable to perform the manipulation of ZnOE paste at a clinical/laboratory temperature of 30°C for optimum performance. The simulated mixing device used in this study can be an alternative for extreme climatic conditions.</p>","PeriodicalId":22669,"journal":{"name":"The Journal of Indian Prosthodontic Society","volume":"23 1","pages":"50-56"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088443/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Indian Prosthodontic Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jips.jips_337_22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: The present study was aimed to investigate the functional relationship between the mixing temperature and properties of a commercially available zinc oxide eugenol impression paste (ZnOE paste).
Settings and design: In-vitro study.
Materials and methods: A custom-made simulated mixing device was indigenously designed to maintain different mixing temperatures, simulating cold, ambient, and hot weather. A commercially available ZnOE paste was mixed according to the manufacturer's instructions in the simulated mixing device at the temperatures ranging from 10°C to 50°C. Initial setting time and consistency were measured according to A. D. A. Specification No. 16 (n = 8). A stainless-steel die having 25, 50, and 75 μm lines was used for surface detail reproduction. Detail reproduction of the stone casts of the impressions was evaluated with a stereomicroscope at 30 magnification (n = 8). The shear bond strength of ZnOE paste to self-cure acrylic tray resin was measured by using the UTM at a crosshead speed of 0.5 mm/min (n = 8).
Statistical analysis used: Data were analyzed by using one-way analysis of variance (ANOVA) and Tukey's post hoc tests at a confidence interval of 95% (alpha =0.05).
Results: Initial setting time, consistency, and detail reproduction of the ZnOE paste were affected by the mixing temperature (P < 0.001). Mixing ZnOE paste at a lower temperature of 10°C and higher temperatures of 40°C and 50°C resulted in shorter initial setting time, thicker consistency, and poor detail reproduction. However, no significant difference was obtained in the shear bond strength among the different mixing temperatures evaluated (P > 0.05).
Conclusion: Based on this in vitro study, it is advisable to perform the manipulation of ZnOE paste at a clinical/laboratory temperature of 30°C for optimum performance. The simulated mixing device used in this study can be an alternative for extreme climatic conditions.