{"title":"Deep Q networks-based optimization of emergency resource scheduling for urban public health events.","authors":"Xianli Zhao, Guixin Wang","doi":"10.1007/s00521-022-07696-2","DOIUrl":null,"url":null,"abstract":"<p><p>In today's severe situation of the global new crown virus raging, there are still efficiency problems in emergency resource scheduling, and there are still deficiencies in rescue standards. For the happiness and well-being of people's lives, adhering to the principle of a community with a shared future for mankind, the emergency resource scheduling system for urban public health emergencies needs to be improved and perfected. This paper mainly studies the optimization model of urban emergency resource scheduling, which uses the deep reinforcement learning algorithm to build the emergency resource distribution system framework, and uses the Deep Q Network path planning algorithm to optimize the system, to achieve the purpose of optimizing and upgrading the efficient scheduling of emergency resources in the city. Finally, through simulation experiments, it is concluded that the deep learning algorithm studied is helpful to the emergency resource scheduling optimization system. However, with the gradual development of deep learning, some of its disadvantages are becoming increasingly obvious. An obvious flaw is that building a deep learning-based model generally requires a lot of CPU computing resources, making the cost too high.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9401203/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-022-07696-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2
Abstract
In today's severe situation of the global new crown virus raging, there are still efficiency problems in emergency resource scheduling, and there are still deficiencies in rescue standards. For the happiness and well-being of people's lives, adhering to the principle of a community with a shared future for mankind, the emergency resource scheduling system for urban public health emergencies needs to be improved and perfected. This paper mainly studies the optimization model of urban emergency resource scheduling, which uses the deep reinforcement learning algorithm to build the emergency resource distribution system framework, and uses the Deep Q Network path planning algorithm to optimize the system, to achieve the purpose of optimizing and upgrading the efficient scheduling of emergency resources in the city. Finally, through simulation experiments, it is concluded that the deep learning algorithm studied is helpful to the emergency resource scheduling optimization system. However, with the gradual development of deep learning, some of its disadvantages are becoming increasingly obvious. An obvious flaw is that building a deep learning-based model generally requires a lot of CPU computing resources, making the cost too high.
期刊介绍:
Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems.
All items relevant to building practical systems are within its scope, including but not limited to:
-adaptive computing-
algorithms-
applicable neural networks theory-
applied statistics-
architectures-
artificial intelligence-
benchmarks-
case histories of innovative applications-
fuzzy logic-
genetic algorithms-
hardware implementations-
hybrid intelligent systems-
intelligent agents-
intelligent control systems-
intelligent diagnostics-
intelligent forecasting-
machine learning-
neural networks-
neuro-fuzzy systems-
pattern recognition-
performance measures-
self-learning systems-
software simulations-
supervised and unsupervised learning methods-
system engineering and integration.
Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.