{"title":"Effects of the SPI/lncRNA NEAT1 Axis on Functions of Trophoblast and Decidual Cells in Patients with Recurrent Miscarriage.","authors":"Fei Tian, Yuan Zhang, Jie Li, Zhaoping Chu, Junqin Zhang, Hua Han, Ligang Jia","doi":"10.1615/CritRevEukaryotGeneExpr.2022045376","DOIUrl":null,"url":null,"abstract":"<p><p>Recurrent miscarriage (RM) is a frustrating and complex pregnancy disorder and long noncoding RNAs (lncRNAs) modulate susceptibility to RM. This study expounded on the role of specificity protein 1 (SP1) in functions of chorionic trophoblast and decidual cells via regulating lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1). Chorionic villus tissues and decidual tissues of RM patients and normal pregnant women were collected. Real-time quantitative polymerase chain reaction and Western blotting revealed that SP1 and NEAT1 were downregulated in trophoblast and decidual tissues of RM patients, and the Pearson correlation analysis detected that they were positively correlated in expression level. Chorionic trophoblast and decidual cells of RM patients were isolated and intervened by vectors over-expressing SP1 or NEAT1 siRNAs. Thereafter, the cell counting kit-8, Transwell, flow cytometry assays detected that SP1 overexpression accelerated trophoblast cell proliferation, invasion, and migration, meanwhile, enhancing decidual cell proliferation while repressed apoptosis. Next, the dual-luciferase and Chromatin immunoprecipitation assays showed that SP1 bound to the NEAT1 promoter region and further activated NEAT1 transcription. Silencing NEAT1 reversed the efforts of SP1 overexpression on the functions of trophoblast and decidual cells. Overall, SP1 activated NEAT1 transcription, accelerating trophoblast cell proliferation, invasion, and migration and mitigating decidual cell apoptosis.</p>","PeriodicalId":56317,"journal":{"name":"Critical Reviews in Eukaryotic Gene Expression","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Eukaryotic Gene Expression","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1615/CritRevEukaryotGeneExpr.2022045376","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recurrent miscarriage (RM) is a frustrating and complex pregnancy disorder and long noncoding RNAs (lncRNAs) modulate susceptibility to RM. This study expounded on the role of specificity protein 1 (SP1) in functions of chorionic trophoblast and decidual cells via regulating lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1). Chorionic villus tissues and decidual tissues of RM patients and normal pregnant women were collected. Real-time quantitative polymerase chain reaction and Western blotting revealed that SP1 and NEAT1 were downregulated in trophoblast and decidual tissues of RM patients, and the Pearson correlation analysis detected that they were positively correlated in expression level. Chorionic trophoblast and decidual cells of RM patients were isolated and intervened by vectors over-expressing SP1 or NEAT1 siRNAs. Thereafter, the cell counting kit-8, Transwell, flow cytometry assays detected that SP1 overexpression accelerated trophoblast cell proliferation, invasion, and migration, meanwhile, enhancing decidual cell proliferation while repressed apoptosis. Next, the dual-luciferase and Chromatin immunoprecipitation assays showed that SP1 bound to the NEAT1 promoter region and further activated NEAT1 transcription. Silencing NEAT1 reversed the efforts of SP1 overexpression on the functions of trophoblast and decidual cells. Overall, SP1 activated NEAT1 transcription, accelerating trophoblast cell proliferation, invasion, and migration and mitigating decidual cell apoptosis.
期刊介绍:
Critical ReviewsTM in Eukaryotic Gene Expression presents timely concepts and experimental approaches that are contributing to rapid advances in our mechanistic understanding of gene regulation, organization, and structure within the contexts of biological control and the diagnosis/treatment of disease. The journal provides in-depth critical reviews, on well-defined topics of immediate interest, written by recognized specialists in the field. Extensive literature citations provide a comprehensive information resource.
Reviews are developed from an historical perspective and suggest directions that can be anticipated. Strengths as well as limitations of methodologies and experimental strategies are considered.