A calibrated Bayesian method for the stratified proportional hazards model with missing covariates.

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Soyoung Kim, Jae-Kwang Kim, Kwang Woo Ahn
{"title":"A calibrated Bayesian method for the stratified proportional hazards model with missing covariates.","authors":"Soyoung Kim,&nbsp;Jae-Kwang Kim,&nbsp;Kwang Woo Ahn","doi":"10.1007/s10985-021-09542-4","DOIUrl":null,"url":null,"abstract":"<p><p>Missing covariates are commonly encountered when evaluating covariate effects on survival outcomes. Excluding missing data from the analysis may lead to biased parameter estimation and a misleading conclusion. The inverse probability weighting method is widely used to handle missing covariates. However, obtaining asymptotic variance in frequentist inference is complicated because it involves estimating parameters for propensity scores. In this paper, we propose a new approach based on an approximate Bayesian method without using Taylor expansion to handle missing covariates for survival data. We consider a stratified proportional hazards model so that it can be used for the non-proportional hazards structure. Two cases for missing pattern are studied: a single missing pattern and multiple missing patterns. The proposed estimators are shown to be consistent and asymptotically normal, which matches the frequentist asymptotic properties. Simulation studies show that our proposed estimators are asymptotically unbiased and the credible region obtained from posterior distribution is close to the frequentist confidence interval. The algorithm is straightforward and computationally efficient. We apply the proposed method to a stem cell transplantation data set.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":"28 2","pages":"169-193"},"PeriodicalIF":1.2000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8977246/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-021-09542-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Missing covariates are commonly encountered when evaluating covariate effects on survival outcomes. Excluding missing data from the analysis may lead to biased parameter estimation and a misleading conclusion. The inverse probability weighting method is widely used to handle missing covariates. However, obtaining asymptotic variance in frequentist inference is complicated because it involves estimating parameters for propensity scores. In this paper, we propose a new approach based on an approximate Bayesian method without using Taylor expansion to handle missing covariates for survival data. We consider a stratified proportional hazards model so that it can be used for the non-proportional hazards structure. Two cases for missing pattern are studied: a single missing pattern and multiple missing patterns. The proposed estimators are shown to be consistent and asymptotically normal, which matches the frequentist asymptotic properties. Simulation studies show that our proposed estimators are asymptotically unbiased and the credible region obtained from posterior distribution is close to the frequentist confidence interval. The algorithm is straightforward and computationally efficient. We apply the proposed method to a stem cell transplantation data set.

缺失协变量分层比例风险模型的校正贝叶斯方法。
在评估协变量对生存结果的影响时,经常会遇到协变量缺失的情况。从分析中排除缺失的数据可能会导致参数估计有偏差,从而得出误导性的结论。反概率加权法被广泛应用于协变量缺失的处理。然而,在频率推理中获得渐近方差是复杂的,因为它涉及到估计倾向分数的参数。在本文中,我们提出了一种新的方法,基于近似贝叶斯方法,不使用泰勒展开来处理缺失协变量的生存数据。我们考虑了一个分层的比例风险模型,以便它可以用于非比例风险结构。研究了两种缺失模式:单个缺失模式和多个缺失模式。证明了所提估计量是一致的和渐近正态的,这与频域渐近性质相匹配。仿真研究表明,我们提出的估计是渐近无偏的,由后验分布得到的可信区域接近于频率置信区间。该算法简单,计算效率高。我们将提出的方法应用于干细胞移植数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信