Retasking of canonical antiviral factors into proviral effectors

IF 5.7 2区 医学 Q1 VIROLOGY
Cason R King , Andrew Mehle
{"title":"Retasking of canonical antiviral factors into proviral effectors","authors":"Cason R King ,&nbsp;Andrew Mehle","doi":"10.1016/j.coviro.2022.101271","DOIUrl":null,"url":null,"abstract":"<div><p>Under constant barrage by viruses<span><span>, hosts have evolved a plethora of antiviral effectors and defense mechanisms. To survive, viruses must adapt to evade or subvert these defenses while still capturing cellular resources to fuel their replication cycles. Large-scale studies of the antiviral activities of cellular proteins and processes have shown that different viruses are controlled by distinct subsets of antiviral genes. The remaining antiviral genes are either ineffective in controlling infection, or in some cases, actually promote infection. In these cases, classically defined antiviral factors are retasked by viruses to enhance viral replication. This creates a more nuanced picture revealing the contextual nature of antiviral activity. The same protein can exert different effects on replication, depending on multiple factors, including the host, the target cells, and the specific virus infecting it. Here, we review numerous examples of viruses hijacking canonically </span>antiviral proteins<span> and retasking them for proviral purposes.</span></span></p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in virology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879625722000827","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Under constant barrage by viruses, hosts have evolved a plethora of antiviral effectors and defense mechanisms. To survive, viruses must adapt to evade or subvert these defenses while still capturing cellular resources to fuel their replication cycles. Large-scale studies of the antiviral activities of cellular proteins and processes have shown that different viruses are controlled by distinct subsets of antiviral genes. The remaining antiviral genes are either ineffective in controlling infection, or in some cases, actually promote infection. In these cases, classically defined antiviral factors are retasked by viruses to enhance viral replication. This creates a more nuanced picture revealing the contextual nature of antiviral activity. The same protein can exert different effects on replication, depending on multiple factors, including the host, the target cells, and the specific virus infecting it. Here, we review numerous examples of viruses hijacking canonically antiviral proteins and retasking them for proviral purposes.

将经典抗病毒因子重新分配为原病毒效应器
在病毒的持续攻击下,宿主进化出了大量的抗病毒效应物和防御机制。为了生存,病毒必须适应以逃避或破坏这些防御,同时仍然捕获细胞资源以促进其复制周期。对细胞蛋白和过程的抗病毒活性的大规模研究表明,不同的病毒受不同的抗病毒基因亚群控制。其余的抗病毒基因要么对控制感染无效,要么在某些情况下实际上促进了感染。在这些情况下,经典定义的抗病毒因子被病毒重新分配以增强病毒复制。这创造了一个更微妙的画面,揭示了抗病毒活性的背景性质。相同的蛋白质可以对复制产生不同的影响,这取决于多种因素,包括宿主、靶细胞和感染它的特定病毒。在这里,我们回顾了许多病毒劫持常规抗病毒蛋白并重新分配它们用于原病毒目的的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.80
自引率
5.10%
发文量
76
审稿时长
83 days
期刊介绍: Current Opinion in Virology (COVIRO) is a systematic review journal that aims to provide specialists with a unique and educational platform to keep up to date with the expanding volume of information published in the field of virology. It publishes 6 issues per year covering the following 11 sections, each of which is reviewed once a year: Emerging viruses: interspecies transmission; Viral immunology; Viral pathogenesis; Preventive and therapeutic vaccines; Antiviral strategies; Virus structure and expression; Animal models for viral diseases; Engineering for viral resistance; Viruses and cancer; Virus vector interactions. There is also a section that changes every year to reflect hot topics in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信