{"title":"A Comprehensive Review on the Importance of MiRNA-206 in the Animal Model and Human Diseases.","authors":"Wang Qi, Wei Guan","doi":"10.2174/1570159X21666230407124146","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNA-206 (miR-206) is a microRNA that is involved in many human diseases, such as myasthenia gravis, osteoarthritis, depression, cancers, etc. Both inhibition effects and progression roles of miR-206 have been reported for the past few years. High expression of miR-206 was observed in patients with osteoarthritis, gastric cancer and epithelial ovarian cancer compared to normal people. The study also showed that miR-206 promotes cancer progression in breast cancer patients and avascular necrosis of the femoral head. Meanwhile, several studies have shown that expression levels of miR-206 were down-regulated in laryngeal carcinoma cell multiplication, as well as in hepatocellular carcinoma, non-small lung cancer and infantile hemangioma. Moreover, miR-206 was up-regulated in the mild stage of amyotrophic lateral sclerosis patients and then down-regulated in the moderate and severe stages, indicating that miR-206 has the double effects of starting and aggravating the disease. In neuropsychiatric disorders, such as depression, miR-206 also plays an important role in the progression of the disease; the level of miR-206 is most highly expressed in the brains of patients with depression. In the current review, we summarize the role of miR-206 in various diseases, and miR-206 may be developed as a new biomarker for diagnosing diseases in the near future.</p>","PeriodicalId":10905,"journal":{"name":"Current Neuropharmacology","volume":" ","pages":"1064-1079"},"PeriodicalIF":4.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10964108/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1570159X21666230407124146","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
MicroRNA-206 (miR-206) is a microRNA that is involved in many human diseases, such as myasthenia gravis, osteoarthritis, depression, cancers, etc. Both inhibition effects and progression roles of miR-206 have been reported for the past few years. High expression of miR-206 was observed in patients with osteoarthritis, gastric cancer and epithelial ovarian cancer compared to normal people. The study also showed that miR-206 promotes cancer progression in breast cancer patients and avascular necrosis of the femoral head. Meanwhile, several studies have shown that expression levels of miR-206 were down-regulated in laryngeal carcinoma cell multiplication, as well as in hepatocellular carcinoma, non-small lung cancer and infantile hemangioma. Moreover, miR-206 was up-regulated in the mild stage of amyotrophic lateral sclerosis patients and then down-regulated in the moderate and severe stages, indicating that miR-206 has the double effects of starting and aggravating the disease. In neuropsychiatric disorders, such as depression, miR-206 also plays an important role in the progression of the disease; the level of miR-206 is most highly expressed in the brains of patients with depression. In the current review, we summarize the role of miR-206 in various diseases, and miR-206 may be developed as a new biomarker for diagnosing diseases in the near future.
期刊介绍:
Current Neuropharmacology aims to provide current, comprehensive/mini reviews and guest edited issues of all areas of neuropharmacology and related matters of neuroscience. The reviews cover the fields of molecular, cellular, and systems/behavioural aspects of neuropharmacology and neuroscience.
The journal serves as a comprehensive, multidisciplinary expert forum for neuropharmacologists and neuroscientists.