{"title":"Detection of single nucleotide polymorphism in <i>HTR4</i> and its relationship with growth traits in sheep.","authors":"Dan Xu, Xiaojuan Wang, Weimin Wang, Deyin Zhang, Xiaolong Li, Yukun Zhang, Yuan Zhao, Jiangbo Cheng, Liming Zhao, Jianghui Wang, Changchun Lin, Xiaobin Yang, Xiuxiu Weng, Xiaoxue Zhang, Wenxin Zheng","doi":"10.1080/10495398.2023.2174877","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a single nucleotide polymorphism of <i>HTR4</i> (hydroxytryptamine receptor 4) was detected using DNA sequencing and KASPar (Kompetitive Allele-Specific PCR) technique with the aim of analyzing its effect on growth traits in 1102 sheep. A synonymous mutation g.101220 C > T located on the fifth intron of the ovis <i>HTR4</i> gene was detected, and association analysis showed that this mutation was significantly associated with growth traits in sheep (<i>p</i> <.05), with TT genotypes having significantly lower body weight, height, length and chest circumference than TC and CC genotypes. It showed that the polymorphism of this locus was significantly associated with growth traits in sheep. In addition, qRT-PCR results showed that <i>HTR4</i> was expressed in different tissues of sheep. It is highly expressed in the liver, spleen and duodenum. As important metabolic, immune and digestive absorption organs in animals, the above tissues can regulate the excitability of intestinal smooth muscle by participating in the body metabolism and nutrient metabolism of sheep, so that sheep can show better growth characteristics. In conclusion, the polymorphic locus identified in <i>HTR4</i> gene can be used as candidate molecular marker in sheep breeding.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":" ","pages":"4600-4607"},"PeriodicalIF":1.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10495398.2023.2174877","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a single nucleotide polymorphism of HTR4 (hydroxytryptamine receptor 4) was detected using DNA sequencing and KASPar (Kompetitive Allele-Specific PCR) technique with the aim of analyzing its effect on growth traits in 1102 sheep. A synonymous mutation g.101220 C > T located on the fifth intron of the ovis HTR4 gene was detected, and association analysis showed that this mutation was significantly associated with growth traits in sheep (p <.05), with TT genotypes having significantly lower body weight, height, length and chest circumference than TC and CC genotypes. It showed that the polymorphism of this locus was significantly associated with growth traits in sheep. In addition, qRT-PCR results showed that HTR4 was expressed in different tissues of sheep. It is highly expressed in the liver, spleen and duodenum. As important metabolic, immune and digestive absorption organs in animals, the above tissues can regulate the excitability of intestinal smooth muscle by participating in the body metabolism and nutrient metabolism of sheep, so that sheep can show better growth characteristics. In conclusion, the polymorphic locus identified in HTR4 gene can be used as candidate molecular marker in sheep breeding.
期刊介绍:
Biotechnology can be defined as any technique that uses living organisms (or parts of organisms like cells, genes, proteins) to make or modify products, to improve plants, animals or microorganisms for a specific use. Animal Biotechnology publishes research on the identification and manipulation of genes and their products, stressing applications in domesticated animals. The journal publishes full-length articles and short research communications, as well as comprehensive reviews. The journal also provides a forum for regulatory or scientific issues related to cell and molecular biology applied to animal biotechnology.
Submissions on the following topics are particularly welcome:
- Applied microbiology, immunogenetics and antibiotic resistance
- Genome engineering and animal models
- Comparative genomics
- Gene editing and CRISPRs
- Reproductive biotechnologies
- Synthetic biology and design of new genomes