Yan Sun, Yifen Yang, Ziran Jiang, Feiyu Wang, Kun Han, Linjun Hong, Jianhua Cao, Mei Yu
{"title":"C/EBP-β contributes to pig endometrial LE receptivity by targeting cell remodeling genes during implantation.","authors":"Yan Sun, Yifen Yang, Ziran Jiang, Feiyu Wang, Kun Han, Linjun Hong, Jianhua Cao, Mei Yu","doi":"10.1530/REP-22-0270","DOIUrl":null,"url":null,"abstract":"<p><strong>In brief: </strong>Transforming the endometrial luminal epithelium (LE) into a receptive state is a requisite event for successful embryo implantation. This study suggests the role of a transcription factor in regulating endometrial LE receptivity.</p><p><strong>Abstract: </strong>The endometrial luminal epithelium (LE) undergoes extensive remodeling during implantation to establish receptivity of the uterus in response to the conceptus signals, such as interleukin 1β (IL1B). But the mechanisms remain to be fully understood. This study investigated the role of CCAAT/enhancer-binding protein β (C/EBP-β) in regulating pig endometrial LE receptivity. Our results showed that C/EBP-β was expressed and activated only in the endometrial LE in an implantation-dependent manner. In addition, C/EBP-β was highly activated at the pre-attachment stage compared to the attachment stage, and its activation was correlated with the expression of IL1B-dependent extracellular signal-regulated kinases1/2-p90 ribosomal S6 kinase signaling axis. Subsequent chromatin immunoprecipitation (ChIP)-sequencing analysis revealed that the binding of C/EBP-β within the promoter was positively associated with the transcription of genes related to cell remodeling. One such gene is matrix metalloproteinase 8 (MMP8), which is responsible for extracellular matrix degradation. The expression of MMP8 was abundant at the pre-attachment stage but dramatically declined at the attachment stage in the endometrial LE. Consistent with C/EBP-β, the expression and activation of MMP8 were limited to the endometrial LE in an implantation-dependent manner. Using ChIP-qPCR and electrophoresis mobility shift assay approaches, we demonstrated that C/EBP-β regulated the expression of the MMP8 gene during implantation. Furthermore, we detected that MMP8 and one of its substrates, type II collagen, showed a mutually exclusive expression pattern in pig endometrial LE during implantation. Our findings indicate that C/EBP-β plays a role in pig endometrial LE receptivity by regulating cell remodeling-related genes, such as MMP8, in response to conceptus signals during implantation.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":"164 6","pages":"269-281"},"PeriodicalIF":3.7000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1530/REP-22-0270","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In brief: Transforming the endometrial luminal epithelium (LE) into a receptive state is a requisite event for successful embryo implantation. This study suggests the role of a transcription factor in regulating endometrial LE receptivity.
Abstract: The endometrial luminal epithelium (LE) undergoes extensive remodeling during implantation to establish receptivity of the uterus in response to the conceptus signals, such as interleukin 1β (IL1B). But the mechanisms remain to be fully understood. This study investigated the role of CCAAT/enhancer-binding protein β (C/EBP-β) in regulating pig endometrial LE receptivity. Our results showed that C/EBP-β was expressed and activated only in the endometrial LE in an implantation-dependent manner. In addition, C/EBP-β was highly activated at the pre-attachment stage compared to the attachment stage, and its activation was correlated with the expression of IL1B-dependent extracellular signal-regulated kinases1/2-p90 ribosomal S6 kinase signaling axis. Subsequent chromatin immunoprecipitation (ChIP)-sequencing analysis revealed that the binding of C/EBP-β within the promoter was positively associated with the transcription of genes related to cell remodeling. One such gene is matrix metalloproteinase 8 (MMP8), which is responsible for extracellular matrix degradation. The expression of MMP8 was abundant at the pre-attachment stage but dramatically declined at the attachment stage in the endometrial LE. Consistent with C/EBP-β, the expression and activation of MMP8 were limited to the endometrial LE in an implantation-dependent manner. Using ChIP-qPCR and electrophoresis mobility shift assay approaches, we demonstrated that C/EBP-β regulated the expression of the MMP8 gene during implantation. Furthermore, we detected that MMP8 and one of its substrates, type II collagen, showed a mutually exclusive expression pattern in pig endometrial LE during implantation. Our findings indicate that C/EBP-β plays a role in pig endometrial LE receptivity by regulating cell remodeling-related genes, such as MMP8, in response to conceptus signals during implantation.
期刊介绍:
Reproduction is the official journal of the Society of Reproduction and Fertility (SRF). It was formed in 2001 when the Society merged its two journals, the Journal of Reproduction and Fertility and Reviews of Reproduction.
Reproduction publishes original research articles and topical reviews on the subject of reproductive and developmental biology, and reproductive medicine. The journal will consider publication of high-quality meta-analyses; these should be submitted to the research papers category. The journal considers studies in humans and all animal species, and will publish clinical studies if they advance our understanding of the underlying causes and/or mechanisms of disease.
Scientific excellence and broad interest to our readership are the most important criteria during the peer review process. The journal publishes articles that make a clear advance in the field, whether of mechanistic, descriptive or technical focus. Articles that substantiate new or controversial reports are welcomed if they are noteworthy and advance the field. Topics include, but are not limited to, reproductive immunology, reproductive toxicology, stem cells, environmental effects on reproductive potential and health (eg obesity), extracellular vesicles, fertility preservation and epigenetic effects on reproductive and developmental processes.