{"title":"Human liver organoid: modeling liver steatosis and beyond.","authors":"Jinsong Wei, Wen Zhang, Bing Zhao","doi":"10.1186/s13619-023-00161-y","DOIUrl":null,"url":null,"abstract":"<p><p>Steatosis, as the early stage of nonalcoholic fatty acid disease (NAFLD), would progress into nonalcoholic steatohepatitis (NASH) and liver failure without intervention. Despite the development of animal models, there is still a lack of the human-relevant platform for steatosis modeling and drug & target discovery. Hendriks et al., reporting in Nature Biotechnology, leveraged human fetal liver organoids to recapitulate steatosis by introducing nutritional and genetic triggers. Using these engineered liver organoid-derived steatosis models, they screened drugs that alleviate steatosis, and mined common mechanism of effective compounds. Further, inspired by the results of drug screening, the arrayed CRISPR-LOF screening targeting 35 lipid metabolism genes was performed, and FADS2 was identified as a critical regulator of steatosis.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10068683/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Regeneration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13619-023-00161-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
Steatosis, as the early stage of nonalcoholic fatty acid disease (NAFLD), would progress into nonalcoholic steatohepatitis (NASH) and liver failure without intervention. Despite the development of animal models, there is still a lack of the human-relevant platform for steatosis modeling and drug & target discovery. Hendriks et al., reporting in Nature Biotechnology, leveraged human fetal liver organoids to recapitulate steatosis by introducing nutritional and genetic triggers. Using these engineered liver organoid-derived steatosis models, they screened drugs that alleviate steatosis, and mined common mechanism of effective compounds. Further, inspired by the results of drug screening, the arrayed CRISPR-LOF screening targeting 35 lipid metabolism genes was performed, and FADS2 was identified as a critical regulator of steatosis.
Cell RegenerationBiochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.80
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍:
Cell Regeneration aims to provide a worldwide platform for researches on stem cells and regenerative biology to develop basic science and to foster its clinical translation in medicine. Cell Regeneration welcomes reports on novel discoveries, theories, methods, technologies, and products in the field of stem cells and regenerative research, the journal is interested, but not limited to the following topics:
◎ Embryonic stem cells
◎ Induced pluripotent stem cells
◎ Tissue-specific stem cells
◎ Tissue or organ regeneration
◎ Methodology
◎ Biomaterials and regeneration
◎ Clinical translation or application in medicine