Adverse effects of 900, 1800 and 2100 MHz radiofrequency radiation emitted from mobile phones on bone and skeletal muscle.

IF 1.6 4区 生物学 Q3 BIOLOGY
Hava Bektas, Asrin Nalbant, Mahmut Berat Akdag, Canan Demir, Servet Kavak, Suleyman Dasdag
{"title":"Adverse effects of 900, 1800 and 2100 MHz radiofrequency radiation emitted from mobile phones on bone and skeletal muscle.","authors":"Hava Bektas,&nbsp;Asrin Nalbant,&nbsp;Mahmut Berat Akdag,&nbsp;Canan Demir,&nbsp;Servet Kavak,&nbsp;Suleyman Dasdag","doi":"10.1080/15368378.2023.2179065","DOIUrl":null,"url":null,"abstract":"<p><p>The goal of this study was to biomechanically and morphologically research both the impact of mobile phone like radiofrequency radiations (RFR) on the tibia and the effects on skeletal muscle through oxidative stress parameters. Fifty-six rats (200-250 g) were put into groups: healthy sham (n = 7), healthy RFR (900, 1800, 2100 MHz) (n = 21), diabetic sham (n = 7) and diabetic RFR (900, 1800, 2100 MHz) (n = 21). Over a month, each group spent two hours/day in a Plexiglas carousel. The rats in the experimental group were exposed to RFR, but the sham groups were not. At the end of the experiment, the right tibia bones and skeletal muscle tissue were removed. The three-point bending test and radiological evaluations were performed on the bones, and CAT, GSH, MDA, and IMA in muscles were measured. There were differences in biomechanics properties and radiological evaluations between the groups (p < .05). In the measurements in the muscle tissues, significant differences were statistically found (p < .05). The average whole-body SAR values for GSM 900, 1800 and 2100 MHz were 0.026, 0.164, and 0.173 W/kg. RFRs emitted from mobile phone may cause adverse effects on tibia and skeletal muscle health, though further studies are needed.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":"42 1","pages":"12-20"},"PeriodicalIF":1.6000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Biology and Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2023.2179065","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this study was to biomechanically and morphologically research both the impact of mobile phone like radiofrequency radiations (RFR) on the tibia and the effects on skeletal muscle through oxidative stress parameters. Fifty-six rats (200-250 g) were put into groups: healthy sham (n = 7), healthy RFR (900, 1800, 2100 MHz) (n = 21), diabetic sham (n = 7) and diabetic RFR (900, 1800, 2100 MHz) (n = 21). Over a month, each group spent two hours/day in a Plexiglas carousel. The rats in the experimental group were exposed to RFR, but the sham groups were not. At the end of the experiment, the right tibia bones and skeletal muscle tissue were removed. The three-point bending test and radiological evaluations were performed on the bones, and CAT, GSH, MDA, and IMA in muscles were measured. There were differences in biomechanics properties and radiological evaluations between the groups (p < .05). In the measurements in the muscle tissues, significant differences were statistically found (p < .05). The average whole-body SAR values for GSM 900, 1800 and 2100 MHz were 0.026, 0.164, and 0.173 W/kg. RFRs emitted from mobile phone may cause adverse effects on tibia and skeletal muscle health, though further studies are needed.

移动电话发出的900、1800及2100兆赫射频辐射对骨骼及骨骼肌的不利影响。
本研究的目的是通过生物力学和形态学研究手机射频辐射(RFR)对胫骨的影响以及通过氧化应激参数对骨骼肌的影响。取56只大鼠(200 ~ 250 g)分为健康假手术组(n = 7)、健康RFR组(900、1800、2100 MHz) (n = 21)、糖尿病假手术组(n = 7)和糖尿病RFR组(900、1800、2100 MHz) (n = 21)。在一个月的时间里,每组每天在有机玻璃旋转木马上呆两个小时。实验组大鼠暴露于RFR,假手术组不暴露于RFR。实验结束时,取右胫骨和骨骼肌组织。对骨进行三点弯曲试验和放射学评价,测定肌肉中CAT、GSH、MDA和IMA。两组间生物力学性能和放射学评价存在差异(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
11.80%
发文量
33
审稿时长
>12 weeks
期刊介绍: Aims & Scope: Electromagnetic Biology and Medicine, publishes peer-reviewed research articles on the biological effects and medical applications of non-ionizing electromagnetic fields (from extremely-low frequency to radiofrequency). Topic examples include in vitro and in vivo studies, epidemiological investigation, mechanism and mode of interaction between non-ionizing electromagnetic fields and biological systems. In addition to publishing original articles, the journal also publishes meeting summaries and reports, and reviews on selected topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信