{"title":"Vestibular Drop Attacks and Meniere's Disease as Results of Otolithic Membrane Damage-A Numerical Model.","authors":"Nicholas Senofsky, Justin Faber, Dolores Bozovic","doi":"10.1007/s10162-022-00880-0","DOIUrl":null,"url":null,"abstract":"<p><p>Meniere's disease (MD) is a condition of the inner ear with symptoms affecting both vestibular and hearing functions. Some patients with MD experience vestibular drop attacks (VDAs), which are violent falls caused by spurious vestibular signals from the utricle and/or saccule. Recent surgical work has shown that patients who experience VDAs also show disrupted utricular otolithic membranes. The objective of this study is to determine if otolithic membrane damage alone is sufficient to induce spurious vestibular signals, thus potentially eliciting VDAs and the vestibular dysfunction seen in patients with MD. We use a previously developed numerical model to describe the nonlinear dynamics of an array of active, elastically coupled hair cells. We then reduce the coupling strength of a selected region of the membrane to model the effects of tissue damage. As we reduce the coupling strength, we observe large and abrupt spikes in hair bundle position. As bundle displacements from the equilibrium position have been shown to lead to depolarization of the hair-cell soma and hence trigger neural activity, this spontaneous activity could elicit false detection of a vestibular signal. The results of this numerical model suggest that otolithic membrane damage alone may be sufficient to induce VDAs and the vestibular dysfunction seen in patients with MD. Future experimental work is needed to confirm these results in vitro.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":"24 1","pages":"107-115"},"PeriodicalIF":2.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9971529/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jaro-Journal of the Association for Research in Otolaryngology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10162-022-00880-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
Meniere's disease (MD) is a condition of the inner ear with symptoms affecting both vestibular and hearing functions. Some patients with MD experience vestibular drop attacks (VDAs), which are violent falls caused by spurious vestibular signals from the utricle and/or saccule. Recent surgical work has shown that patients who experience VDAs also show disrupted utricular otolithic membranes. The objective of this study is to determine if otolithic membrane damage alone is sufficient to induce spurious vestibular signals, thus potentially eliciting VDAs and the vestibular dysfunction seen in patients with MD. We use a previously developed numerical model to describe the nonlinear dynamics of an array of active, elastically coupled hair cells. We then reduce the coupling strength of a selected region of the membrane to model the effects of tissue damage. As we reduce the coupling strength, we observe large and abrupt spikes in hair bundle position. As bundle displacements from the equilibrium position have been shown to lead to depolarization of the hair-cell soma and hence trigger neural activity, this spontaneous activity could elicit false detection of a vestibular signal. The results of this numerical model suggest that otolithic membrane damage alone may be sufficient to induce VDAs and the vestibular dysfunction seen in patients with MD. Future experimental work is needed to confirm these results in vitro.
期刊介绍:
JARO is a peer-reviewed journal that publishes research findings from disciplines related to otolaryngology and communications sciences, including hearing, balance, speech and voice. JARO welcomes submissions describing experimental research that investigates the mechanisms underlying problems of basic and/or clinical significance.
Authors are encouraged to familiarize themselves with the kinds of papers carried by JARO by looking at past issues. Clinical case studies and pharmaceutical screens are not likely to be considered unless they reveal underlying mechanisms. Methods papers are not encouraged unless they include significant new findings as well. Reviews will be published at the discretion of the editorial board; consult the editor-in-chief before submitting.