Seung Yeon Seo, Jungsu S Oh, Jinwha Chung, Seog-Young Kim, Jae Seung Kim
{"title":"MR Template-Based Individual Brain PET Volumes-of-Interest Generation Neither Using MR nor Using Spatial Normalization.","authors":"Seung Yeon Seo, Jungsu S Oh, Jinwha Chung, Seog-Young Kim, Jae Seung Kim","doi":"10.1007/s13139-022-00772-4","DOIUrl":null,"url":null,"abstract":"<p><p>For more anatomically precise quantitation of mouse brain PET, spatial normalization (SN) of PET onto MR template and subsequent template volumes-of-interest (VOIs)-based analysis are commonly used. Although this leads to dependency on the corresponding MR and the process of SN, routine preclinical/clinical PET images cannot always afford corresponding MR and relevant VOIs. To resolve this issue, we propose a deep learning (DL)-based individual-brain-specific VOIs (i.e., cortex, hippocampus, striatum, thalamus, and cerebellum) directly generated from PET images using the inverse-spatial-normalization (iSN)-based VOI labels and deep convolutional neural network model (deep CNN). Our technique was applied to mutated amyloid precursor protein and presenilin-1 mouse model of Alzheimer's disease. Eighteen mice underwent T2-weighted MRI and <sup>18</sup>F FDG PET scans before and after the administration of human immunoglobin or antibody-based treatments. To train the CNN, PET images were used as inputs and MR iSN-based target VOIs as labels. Our devised methods achieved decent performance in terms of not only VOI agreements (i.e., Dice similarity coefficient) but also the correlation of mean counts and SUVR, and CNN-based VOIs was highly accordant with ground-truth (the corresponding MR and MR template-based VOIs). Moreover, the performance metrics were comparable to that of VOI generated by MR-based deep CNN. In conclusion, we established a novel quantitative analysis method both MR-less and SN-less fashion to generate individual brain space VOIs using MR template-based VOIs for PET image quantification.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13139-022-00772-4.</p>","PeriodicalId":19384,"journal":{"name":"Nuclear Medicine and Molecular Imaging","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10043100/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Medicine and Molecular Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13139-022-00772-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
For more anatomically precise quantitation of mouse brain PET, spatial normalization (SN) of PET onto MR template and subsequent template volumes-of-interest (VOIs)-based analysis are commonly used. Although this leads to dependency on the corresponding MR and the process of SN, routine preclinical/clinical PET images cannot always afford corresponding MR and relevant VOIs. To resolve this issue, we propose a deep learning (DL)-based individual-brain-specific VOIs (i.e., cortex, hippocampus, striatum, thalamus, and cerebellum) directly generated from PET images using the inverse-spatial-normalization (iSN)-based VOI labels and deep convolutional neural network model (deep CNN). Our technique was applied to mutated amyloid precursor protein and presenilin-1 mouse model of Alzheimer's disease. Eighteen mice underwent T2-weighted MRI and 18F FDG PET scans before and after the administration of human immunoglobin or antibody-based treatments. To train the CNN, PET images were used as inputs and MR iSN-based target VOIs as labels. Our devised methods achieved decent performance in terms of not only VOI agreements (i.e., Dice similarity coefficient) but also the correlation of mean counts and SUVR, and CNN-based VOIs was highly accordant with ground-truth (the corresponding MR and MR template-based VOIs). Moreover, the performance metrics were comparable to that of VOI generated by MR-based deep CNN. In conclusion, we established a novel quantitative analysis method both MR-less and SN-less fashion to generate individual brain space VOIs using MR template-based VOIs for PET image quantification.
Supplementary information: The online version contains supplementary material available at 10.1007/s13139-022-00772-4.
期刊介绍:
Nuclear Medicine and Molecular Imaging (Nucl Med Mol Imaging) is an official journal of the Korean Society of Nuclear Medicine, which bimonthly publishes papers on February, April, June, August, October, and December about nuclear medicine and related sciences such as radiochemistry, radiopharmacy, dosimetry and pharmacokinetics / pharmacodynamics of radiopharmaceuticals, nuclear and molecular imaging analysis, nuclear and molecular imaging instrumentation, radiation biology and radionuclide therapy. The journal specially welcomes works of artificial intelligence applied to nuclear medicine. The journal will also welcome original works relating to molecular imaging research such as the development of molecular imaging probes, reporter imaging assays, imaging cell trafficking, imaging endo(exo)genous gene expression, and imaging signal transduction. Nucl Med Mol Imaging publishes the following types of papers: original articles, reviews, case reports, editorials, interesting images, and letters to the editor.
The Korean Society of Nuclear Medicine (KSNM)
KSNM is a scientific and professional organization founded in 1961 and a member of the Korean Academy of Medical Sciences of the Korean Medical Association which was established by The Medical Services Law. The aims of KSNM are the promotion of nuclear medicine and cooperation of each member. The business of KSNM includes holding academic meetings and symposia, the publication of journals and books, planning and research of promoting science and health, and training and qualification of nuclear medicine specialists.