{"title":"PCGF6/MAX/KDM5D facilitates MAZ/CDK4 axis expression and pRCC progression by hypomethylation of the DNA promoter.","authors":"Meng Zhu, Ruo-Nan Zhang, Hong Zhang, Chang-Bao Qu, Xiao-Chong Zhang, Li-Xin Ren, Zhan Yang, Jun-Fei Gu","doi":"10.1186/s13072-023-00483-w","DOIUrl":null,"url":null,"abstract":"<p><p>Polycomb group RING finger protein 6 (PCGF6) plays an important role as a regulator of transcription in a variety of cellular processes, including tumorigenesis. However, the function and expression of PCGF6 in papillary RCC (pRCC) remain unclear. In the present study, we found that PCGF6 expression was significantly elevated in pRCC tissues, and high expression of PCGF6 was associated with poor survival of patients with pRCC. The overexpression of PCGF6 promoted while depletion of PCGF6 depressed the proliferation of pRCC cells in vitro. Interestingly, myc-related zinc finger protein (MAZ), a downstream molecular of PCGF6, was upregulated in pRCC with hypomethylation promoter. Mechanically, PCGF6 promoted MAZ expression by interacting with MAX and KDM5D to form a complex, and MAX recruited PCGF6 and KDM5D to the CpG island of the MAZ promoter and facilitated H3K4 histone demethylation. Furthermore, CDK4 was a downstream molecule of MAZ that participated in PCGF6/MAZ-regulated progression of pRCC. These results indicated that the upregulation of PCGF6 facilitated MAZ/CDK4 axis expression and pRCC progression by hypomethylation of the MAZ promoter. The PCGF6/MAZ/CDK4 regulatory axis may be a potential target for the treatment of ccRCC.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9996882/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics & Chromatin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13072-023-00483-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Polycomb group RING finger protein 6 (PCGF6) plays an important role as a regulator of transcription in a variety of cellular processes, including tumorigenesis. However, the function and expression of PCGF6 in papillary RCC (pRCC) remain unclear. In the present study, we found that PCGF6 expression was significantly elevated in pRCC tissues, and high expression of PCGF6 was associated with poor survival of patients with pRCC. The overexpression of PCGF6 promoted while depletion of PCGF6 depressed the proliferation of pRCC cells in vitro. Interestingly, myc-related zinc finger protein (MAZ), a downstream molecular of PCGF6, was upregulated in pRCC with hypomethylation promoter. Mechanically, PCGF6 promoted MAZ expression by interacting with MAX and KDM5D to form a complex, and MAX recruited PCGF6 and KDM5D to the CpG island of the MAZ promoter and facilitated H3K4 histone demethylation. Furthermore, CDK4 was a downstream molecule of MAZ that participated in PCGF6/MAZ-regulated progression of pRCC. These results indicated that the upregulation of PCGF6 facilitated MAZ/CDK4 axis expression and pRCC progression by hypomethylation of the MAZ promoter. The PCGF6/MAZ/CDK4 regulatory axis may be a potential target for the treatment of ccRCC.
Polycomb group RING finger protein 6 (PCGF6)在包括肿瘤发生在内的多种细胞过程中作为转录调节因子发挥着重要作用。然而,PCGF6在乳头状RCC (pRCC)中的功能和表达尚不清楚。在本研究中,我们发现PCGF6在pRCC组织中的表达显著升高,且PCGF6的高表达与pRCC患者的生存不良相关。在体外实验中,PCGF6过表达促进了pRCC细胞的增殖,而PCGF6缺失抑制了pRCC细胞的增殖。有趣的是,PCGF6的下游分子myc相关锌指蛋白(MAZ)在pRCC中通过低甲基化启动子上调。机制上,PCGF6通过与MAX和KDM5D相互作用形成复合物促进MAZ表达,MAX将PCGF6和KDM5D招募到MAZ启动子的CpG岛,促进H3K4组蛋白去甲基化。此外,CDK4是MAZ的下游分子,参与PCGF6/MAZ调控的pRCC进展。这些结果表明,PCGF6的上调通过MAZ启动子的低甲基化促进了MAZ/CDK4轴的表达和pRCC的进展。PCGF6/MAZ/CDK4调控轴可能是治疗ccRCC的潜在靶点。
期刊介绍:
Epigenetics & Chromatin is a peer-reviewed, open access, online journal that publishes research, and reviews, providing novel insights into epigenetic inheritance and chromatin-based interactions. The journal aims to understand how gene and chromosomal elements are regulated and their activities maintained during processes such as cell division, differentiation and environmental alteration.