Efficient Alkaline Water/Seawater Electrolysis by Development of Ultra-Low IrO2 Nanoparticles Decorated on Hierarchical MnO2/rGO Nanostructure

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
S. C. Karthikeyan, Ramasamy Santhosh Kumar, Shanmugam Ramakrishnan, Sampath Prabhakaran, Ae Rhan Kim, Do Hwan Kim and Dong Jin Yoo*, 
{"title":"Efficient Alkaline Water/Seawater Electrolysis by Development of Ultra-Low IrO2 Nanoparticles Decorated on Hierarchical MnO2/rGO Nanostructure","authors":"S. C. Karthikeyan,&nbsp;Ramasamy Santhosh Kumar,&nbsp;Shanmugam Ramakrishnan,&nbsp;Sampath Prabhakaran,&nbsp;Ae Rhan Kim,&nbsp;Do Hwan Kim and Dong Jin Yoo*,&nbsp;","doi":"10.1021/acssuschemeng.2c04074","DOIUrl":null,"url":null,"abstract":"<p >Development of economical and efficient bifunctional electrocatalysts for the alkaline water/seawater electrolysis becomes essential for industrial hydrogen production. Herein, we developed a rational design for a bifunctional electrocatalyst with ultra-low (∼3.7%) loading of iridium oxide nanoparticles anchored on a hierarchical manganese oxide sheet grown in reduced graphene oxide (IrO<sub>2</sub>@MnO<sub>2</sub>/rGO) through a cost-effective hydrothermal and calcination route. The optimized IrO<sub>2</sub>@MnO<sub>2</sub>/rGO shows enhanced bifunctional activity toward the oxygen evolution reaction (η<sub>10</sub> = 190 mV) and the hydrogen evolution reaction (η<sub>10</sub> = 170 mV) in a 1.0 M KOH electrolyte due to a larger electrochemical surface area of hierarchical MnO<sub>2</sub>/rGO with a greater number of IrO<sub>2</sub> active sites and a strong synergistic effect between IrO<sub>2</sub> and MnO<sub>2</sub>. The fabricated IrO<sub>2</sub>@MnO<sub>2</sub>/rGO||IrO<sub>2</sub>@MnO<sub>2</sub>/rGO water-splitting device exhibits cell voltage comparable to benchmark Pt–C||IrO<sub>2</sub> and remarkably higher durability of about 300 h. The post-morphological studies of the optimized IrO<sub>2</sub>@MnO<sub>2</sub>/rGO catalyst reveal significant retention of IrO<sub>2</sub> nanoparticles in the IrO<sub>2</sub>@MnO<sub>2</sub>/rGO electrocatalyst. For practical applications, we fabricated IrO<sub>2</sub>@MnO<sub>2</sub>/rGO||IrO<sub>2</sub>@MnO<sub>2</sub>/rGO natural seawater water-splitting device and it displayed a lower cell voltage of 1.64 V at a current density of 10 mA cm<sup>–2</sup>. This paves a potential pathway toward the design of an efficient, durable, and bifunctional electrocatalyst for clean hydrogen production and alkaline water/seawater electrolysis.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"10 46","pages":"15068–15081"},"PeriodicalIF":7.3000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.2c04074","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Development of economical and efficient bifunctional electrocatalysts for the alkaline water/seawater electrolysis becomes essential for industrial hydrogen production. Herein, we developed a rational design for a bifunctional electrocatalyst with ultra-low (∼3.7%) loading of iridium oxide nanoparticles anchored on a hierarchical manganese oxide sheet grown in reduced graphene oxide (IrO2@MnO2/rGO) through a cost-effective hydrothermal and calcination route. The optimized IrO2@MnO2/rGO shows enhanced bifunctional activity toward the oxygen evolution reaction (η10 = 190 mV) and the hydrogen evolution reaction (η10 = 170 mV) in a 1.0 M KOH electrolyte due to a larger electrochemical surface area of hierarchical MnO2/rGO with a greater number of IrO2 active sites and a strong synergistic effect between IrO2 and MnO2. The fabricated IrO2@MnO2/rGO||IrO2@MnO2/rGO water-splitting device exhibits cell voltage comparable to benchmark Pt–C||IrO2 and remarkably higher durability of about 300 h. The post-morphological studies of the optimized IrO2@MnO2/rGO catalyst reveal significant retention of IrO2 nanoparticles in the IrO2@MnO2/rGO electrocatalyst. For practical applications, we fabricated IrO2@MnO2/rGO||IrO2@MnO2/rGO natural seawater water-splitting device and it displayed a lower cell voltage of 1.64 V at a current density of 10 mA cm–2. This paves a potential pathway toward the design of an efficient, durable, and bifunctional electrocatalyst for clean hydrogen production and alkaline water/seawater electrolysis.

Abstract Image

多层MnO2/rGO纳米结构修饰的超低IrO2纳米颗粒制备高效碱水/海水电解
开发经济高效的碱水/海水电解双功能电催化剂是实现工业制氢的必要条件。在此,我们开发了一种合理的双功能电催化剂设计,该电催化剂将超低(~ 3.7%)负载的氧化铱纳米颗粒锚定在还原氧化石墨烯(IrO2@MnO2/rGO)中生长的分层氧化锰片上,通过经济高效的水热和煅烧路线。优化后的IrO2@MnO2/rGO在1.0 M KOH的电解液中,由于层次化MnO2/rGO具有更大的电化学表面积和更多的IrO2活性位点,且IrO2和MnO2之间具有较强的协同作用,在析氧反应(η10 = 190 mV)和析氢反应(η10 = 170 mV)中表现出更强的双功能活性。制备的IrO2@MnO2/rGO||IrO2@MnO2/rGO水分解装置具有与基准Pt-C ||IrO2相当的电池电压,并且具有约300小时的高耐久性。优化后的IrO2@MnO2/rGO催化剂的后形态学研究表明,在IrO2@MnO2/rGO电催化剂中有明显的IrO2纳米颗粒保留。在实际应用中,我们制作了IrO2@MnO2/rGO||IrO2@MnO2/rGO天然海水水分解装置,在电流密度为10 mA cm-2时,其电池电压较低,为1.64 V。这为设计一种高效、耐用、双功能的清洁制氢和碱性水/海水电解电催化剂铺平了一条潜在的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信