Insights into H2O2-induced signaling in Jurkat cells from analysis of gene expression.

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Megan F Taylor, Michael A Black, Mark B Hampton, Elizabeth C Ledgerwood
{"title":"Insights into H<sub>2</sub>O<sub>2</sub>-induced signaling in Jurkat cells from analysis of gene expression.","authors":"Megan F Taylor,&nbsp;Michael A Black,&nbsp;Mark B Hampton,&nbsp;Elizabeth C Ledgerwood","doi":"10.1080/10715762.2023.2165073","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is a ubiquitous oxidant produced in a regulated manner by various enzymes in mammalian cells. H<sub>2</sub>O<sub>2</sub> reversibly oxidizes thiol groups of cysteine residues to mediate intracellular signaling. While examples of H<sub>2</sub>O<sub>2-</sub>dependent signaling have been reported, the exact molecular mechanism(s) of signaling and the pathways affected are not well understood. Here, the transcriptomic response of Jurkat T cells to H<sub>2</sub>O<sub>2</sub> was investigated to determine global effects on gene expression. With a low H<sub>2</sub>O<sub>2</sub> concentration (10 µM) that did not induce an oxidative stress response or cell death, extensive changes in gene expression occurred after 4 h (6803 differentially expressed genes). Of the genes with a greater then 2-fold change in expression, 85% were upregulated suggesting that in a physiological setting H<sub>2</sub>O<sub>2</sub> predominantly activates gene expression. Pathway analysis identified gene expression signatures associated with FOXO and NTRK signaling. These signatures were associated with an overlapping set of transcriptional regulators. Overall, our results provide a snapshot of gene expression changes in response to H<sub>2</sub>O<sub>2,</sub> which, along with further studies, will lead to new insights into the specific pathways that are activated in response to endogenous production of H<sub>2</sub>O<sub>2</sub>, and the molecular mechanisms of H<sub>2</sub>O<sub>2</sub> signaling.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2023.2165073","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Hydrogen peroxide (H2O2) is a ubiquitous oxidant produced in a regulated manner by various enzymes in mammalian cells. H2O2 reversibly oxidizes thiol groups of cysteine residues to mediate intracellular signaling. While examples of H2O2-dependent signaling have been reported, the exact molecular mechanism(s) of signaling and the pathways affected are not well understood. Here, the transcriptomic response of Jurkat T cells to H2O2 was investigated to determine global effects on gene expression. With a low H2O2 concentration (10 µM) that did not induce an oxidative stress response or cell death, extensive changes in gene expression occurred after 4 h (6803 differentially expressed genes). Of the genes with a greater then 2-fold change in expression, 85% were upregulated suggesting that in a physiological setting H2O2 predominantly activates gene expression. Pathway analysis identified gene expression signatures associated with FOXO and NTRK signaling. These signatures were associated with an overlapping set of transcriptional regulators. Overall, our results provide a snapshot of gene expression changes in response to H2O2, which, along with further studies, will lead to new insights into the specific pathways that are activated in response to endogenous production of H2O2, and the molecular mechanisms of H2O2 signaling.

通过基因表达分析了解h2o2诱导Jurkat细胞信号转导。
过氧化氢(H2O2)是一种普遍存在的氧化剂,在哺乳动物细胞中由各种酶以受调节的方式产生。H2O2可逆氧化半胱氨酸残基的巯基,介导细胞内信号传导。虽然已经报道了依赖h2o2的信号传导的例子,但信号传导的确切分子机制和受影响的途径尚不清楚。在这里,我们研究了Jurkat T细胞对H2O2的转录组反应,以确定对基因表达的整体影响。低H2O2浓度(10µM)不诱导氧化应激反应或细胞死亡,4 h后基因表达发生广泛变化(6803个差异表达基因)。在表达变化大于2倍的基因中,85%的基因表达上调,这表明在生理环境下H2O2主要激活基因表达。通路分析确定了FOXO和NTRK信号相关的基因表达特征。这些特征与一组重叠的转录调控因子有关。总的来说,我们的研究结果提供了一个基因表达变化响应H2O2的缩影,随着进一步的研究,将导致新的见解,在响应内源性H2O2产生激活的特定途径,以及H2O2信号传导的分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Free Radical Research
Free Radical Research 生物-生化与分子生物学
CiteScore
6.70
自引率
0.00%
发文量
47
审稿时长
3 months
期刊介绍: Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信