Tingting Zhao, Zhiyong Zeng, Tong Li, Wenjing Tao, Xing Yu, Tao Feng, Rui Bu
{"title":"USC-ENet: a high-efficiency model for the diagnosis of liver tumors combining B-mode ultrasound and clinical data.","authors":"Tingting Zhao, Zhiyong Zeng, Tong Li, Wenjing Tao, Xing Yu, Tao Feng, Rui Bu","doi":"10.1007/s13755-023-00217-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Ultrasound image acquisition has the advantages of being low cost, rapid, and non-invasive, and it does not produce radiation. Currently, ultrasound is widely used in the diagnosis of liver tumors. However, owing to the complex presentation and diverse features of benign and malignant liver tumors, accurate diagnosis of liver tumors using ultrasound is difficult even for experienced radiologists. In recent years, artificial intelligence-assisted diagnosis has proven to provide effective support to radiologists. However, there is room for further improvement in the existing ultrasound artificial intelligence diagnostic model of liver tumor. First, the image diagnostic model may not fully consider relevant clinical data in the decision-making process. Second, owing to the difficulty in collecting biopsy pathology and physician-labeled ultrasound data of liver tumors, training datasets are usually small, and commonly used large neural networks tend to overfit on small datasets, which seriously affects the generalization of the model.</p><p><strong>Methods: </strong>In this study, we propose a deep learning-assisted diagnosis model called USC-ENet, which integrates B-mode ultrasound features of liver tumors and clinical data of patients, and we design a small neural network specifically for small-scale medical images combined with an attention mechanism.</p><p><strong>Results and conclusion: </strong>Real data from 542 patients with liver tumors (N = 2168 images) are used during model training and validation. Experiments show that USC-ENet can achieve a good classification effect (area under the curve = 0.956, sensitivity = 0.915, and specificity = 0.880) after small-scale data training, and it has certain interpretability, showing good potential for clinical adoption. In conclusion, our model provides not only a reliable second opinion for radiologists but also a reference for junior radiologists who lack clinical experience.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"15"},"PeriodicalIF":4.7000,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10025174/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-023-00217-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Ultrasound image acquisition has the advantages of being low cost, rapid, and non-invasive, and it does not produce radiation. Currently, ultrasound is widely used in the diagnosis of liver tumors. However, owing to the complex presentation and diverse features of benign and malignant liver tumors, accurate diagnosis of liver tumors using ultrasound is difficult even for experienced radiologists. In recent years, artificial intelligence-assisted diagnosis has proven to provide effective support to radiologists. However, there is room for further improvement in the existing ultrasound artificial intelligence diagnostic model of liver tumor. First, the image diagnostic model may not fully consider relevant clinical data in the decision-making process. Second, owing to the difficulty in collecting biopsy pathology and physician-labeled ultrasound data of liver tumors, training datasets are usually small, and commonly used large neural networks tend to overfit on small datasets, which seriously affects the generalization of the model.
Methods: In this study, we propose a deep learning-assisted diagnosis model called USC-ENet, which integrates B-mode ultrasound features of liver tumors and clinical data of patients, and we design a small neural network specifically for small-scale medical images combined with an attention mechanism.
Results and conclusion: Real data from 542 patients with liver tumors (N = 2168 images) are used during model training and validation. Experiments show that USC-ENet can achieve a good classification effect (area under the curve = 0.956, sensitivity = 0.915, and specificity = 0.880) after small-scale data training, and it has certain interpretability, showing good potential for clinical adoption. In conclusion, our model provides not only a reliable second opinion for radiologists but also a reference for junior radiologists who lack clinical experience.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.