Lisa Koole, Pilar Martinez-Martinez, Therese van Amelsvoort, Chris T Evelo, Friederike Ehrhart
{"title":"Interactive neuroinflammation pathways and transcriptomics-based identification of drugs and chemical compounds for schizophrenia.","authors":"Lisa Koole, Pilar Martinez-Martinez, Therese van Amelsvoort, Chris T Evelo, Friederike Ehrhart","doi":"10.1080/15622975.2023.2281514","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Schizophrenia is a psychiatric disorder affecting 1% of the population. Accumulating evidence indicates that neuroinflammation is involved in the pathology of these disorders by altering neurodevelopmental processes and specifically affecting glutamatergic signalling and astrocytic functioning. The aim of this study was to curate interactive biological pathways involved in schizophrenia for the identification of novel pharmacological targets implementing pathway, gene ontology, and network analysis.</p><p><strong>Methods: </strong>Neuroinflammatory pathways were created using PathVisio and published in WikiPathways. A transcriptomics dataset, originally created by Narla et al. was selected for data visualisation and analysis. Transcriptomics data was visualised within pathways and networks, extended with transcription factors, pathways, and drugs. Network hubs were determined based on degrees of connectivity.</p><p><strong>Results: </strong>Glutamatergic, immune, and astrocytic signalling as well as extracellular matrix reorganisation were altered in schizophrenia while we did not find an effect on the complement system. Pharmacological agents that target the glutamate receptor subunits, inflammatory mediators, and metabolic enzymes were identified.</p><p><strong>Conclusions: </strong>New neuroinflammatory pathways incorporating the extracellular matrix, glutamatergic neurons, and astrocytes in the aetiology of schizophrenia were established. Transcriptomics based network analysis provided novel targets, including extra-synaptic glutamate receptors, glutamate transporters and extracellular matrix molecules that can be evaluated for therapeutic strategies.</p>","PeriodicalId":49358,"journal":{"name":"World Journal of Biological Psychiatry","volume":" ","pages":"116-129"},"PeriodicalIF":3.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15622975.2023.2281514","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Schizophrenia is a psychiatric disorder affecting 1% of the population. Accumulating evidence indicates that neuroinflammation is involved in the pathology of these disorders by altering neurodevelopmental processes and specifically affecting glutamatergic signalling and astrocytic functioning. The aim of this study was to curate interactive biological pathways involved in schizophrenia for the identification of novel pharmacological targets implementing pathway, gene ontology, and network analysis.
Methods: Neuroinflammatory pathways were created using PathVisio and published in WikiPathways. A transcriptomics dataset, originally created by Narla et al. was selected for data visualisation and analysis. Transcriptomics data was visualised within pathways and networks, extended with transcription factors, pathways, and drugs. Network hubs were determined based on degrees of connectivity.
Results: Glutamatergic, immune, and astrocytic signalling as well as extracellular matrix reorganisation were altered in schizophrenia while we did not find an effect on the complement system. Pharmacological agents that target the glutamate receptor subunits, inflammatory mediators, and metabolic enzymes were identified.
Conclusions: New neuroinflammatory pathways incorporating the extracellular matrix, glutamatergic neurons, and astrocytes in the aetiology of schizophrenia were established. Transcriptomics based network analysis provided novel targets, including extra-synaptic glutamate receptors, glutamate transporters and extracellular matrix molecules that can be evaluated for therapeutic strategies.
期刊介绍:
The aim of The World Journal of Biological Psychiatry is to increase the worldwide communication of knowledge in clinical and basic research on biological psychiatry. Its target audience is thus clinical psychiatrists, educators, scientists and students interested in biological psychiatry. The composition of The World Journal of Biological Psychiatry , with its diverse categories that allow communication of a great variety of information, ensures that it is of interest to a wide range of readers.
The World Journal of Biological Psychiatry is a major clinically oriented journal on biological psychiatry. The opportunity to educate (through critical review papers, treatment guidelines and consensus reports), publish original work and observations (original papers and brief reports) and to express personal opinions (Letters to the Editor) makes The World Journal of Biological Psychiatry an extremely important medium in the field of biological psychiatry all over the world.