Theta Frequency Electromagnetic Stimulation Enhances Functional Recovery After Stroke.

IF 3.8 2区 医学 Q1 CLINICAL NEUROLOGY
Translational Stroke Research Pub Date : 2025-04-01 Epub Date: 2023-11-14 DOI:10.1007/s12975-023-01202-z
Naohiko Okabe, Mary Hovanesyan, Srbui Azarapetian, Weiye Dai, Batsheva Weisinger, Ana Parabucki, Shira Reznik Balter, Esther Shohami, Yaron Segal, S Thomas Carmichael
{"title":"Theta Frequency Electromagnetic Stimulation Enhances Functional Recovery After Stroke.","authors":"Naohiko Okabe, Mary Hovanesyan, Srbui Azarapetian, Weiye Dai, Batsheva Weisinger, Ana Parabucki, Shira Reznik Balter, Esther Shohami, Yaron Segal, S Thomas Carmichael","doi":"10.1007/s12975-023-01202-z","DOIUrl":null,"url":null,"abstract":"<p><p>Extremely low-frequency, low-intensity electromagnetic field (ELF-EMF) therapy is a non-invasive brain stimulation method that can modulate neuroprotection and neuroplasticity. ELF-EMF was recently shown to enhance recovery in human stroke in a small pilot clinical trial (NCT04039178). ELF-EMFs encompass a wide range of frequencies, typically ranging from 1 to 100 Hz, and their effects can vary depending on the specific frequency employed. However, whether and to what extent the effectiveness of ELF-EMFs depends on the frequency remains unclear. In the present study, we aimed to assess the efficacy of different frequency-intensity protocols of ELF-EMF in promoting functional recovery in a mouse cortical stroke model with treatment initiated 4 days after the stroke, employing a series of motor behavior tests. Our findings demonstrate that a theta-frequency ELF-EMF (5 Hz) effectively enhances functional recovery in a reach-to-grasp task, whereas neither gamma-frequency (40 Hz) nor combination frequency (5-16-40 Hz) ELF-EMFs induce a significant effect. Importantly, our histological analysis reveals that none of the ELF-EMF protocols employed in our study affect infarct volume, inflammatory, or glial activation, suggesting that the observed beneficial effects may be mediated through non-neuroprotective mechanisms. Our data indicate that ELF-EMFs have an influence on functional recovery after stroke, and this effect is contingent upon the specific frequency used. These findings underscore the critical importance of optimizing the protocol parameters to maximize the beneficial effects of ELF-EMF. Further research is warranted to elucidate the underlying mechanisms and refine the protocol parameters for optimal therapeutic outcomes in stroke rehabilitation.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":"194-206"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Stroke Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12975-023-01202-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Extremely low-frequency, low-intensity electromagnetic field (ELF-EMF) therapy is a non-invasive brain stimulation method that can modulate neuroprotection and neuroplasticity. ELF-EMF was recently shown to enhance recovery in human stroke in a small pilot clinical trial (NCT04039178). ELF-EMFs encompass a wide range of frequencies, typically ranging from 1 to 100 Hz, and their effects can vary depending on the specific frequency employed. However, whether and to what extent the effectiveness of ELF-EMFs depends on the frequency remains unclear. In the present study, we aimed to assess the efficacy of different frequency-intensity protocols of ELF-EMF in promoting functional recovery in a mouse cortical stroke model with treatment initiated 4 days after the stroke, employing a series of motor behavior tests. Our findings demonstrate that a theta-frequency ELF-EMF (5 Hz) effectively enhances functional recovery in a reach-to-grasp task, whereas neither gamma-frequency (40 Hz) nor combination frequency (5-16-40 Hz) ELF-EMFs induce a significant effect. Importantly, our histological analysis reveals that none of the ELF-EMF protocols employed in our study affect infarct volume, inflammatory, or glial activation, suggesting that the observed beneficial effects may be mediated through non-neuroprotective mechanisms. Our data indicate that ELF-EMFs have an influence on functional recovery after stroke, and this effect is contingent upon the specific frequency used. These findings underscore the critical importance of optimizing the protocol parameters to maximize the beneficial effects of ELF-EMF. Further research is warranted to elucidate the underlying mechanisms and refine the protocol parameters for optimal therapeutic outcomes in stroke rehabilitation.

Abstract Image

θ频率电磁刺激促进中风后功能恢复。
极低频低强度电磁场(ELF-EMF)治疗是一种可以调节神经保护和神经可塑性的非侵入性脑刺激方法。最近在一项小型试点临床试验(NCT04039178)中显示,ELF-EMF可促进人类中风的恢复。elf - emf包含很宽的频率范围,通常在1到100 Hz之间,它们的效果可以根据所采用的特定频率而变化。然而,低频电磁场的有效性是否以及在多大程度上取决于频率仍不清楚。在本研究中,我们旨在评估不同频率强度的ELF-EMF方案在脑卒中后4天开始治疗的小鼠皮质卒中模型中促进功能恢复的功效,采用一系列运动行为测试。我们的研究结果表明,theta频率的ELF-EMF (5 Hz)有效地增强了手握任务中的功能恢复,而gamma频率(40 Hz)和组合频率(5-16-40 Hz)的ELF-EMF都不会产生显著的效果。重要的是,我们的组织学分析显示,在我们的研究中使用的任何一种ELF-EMF方案都不会影响梗死体积、炎症或神经胶质活化,这表明观察到的有益效果可能是通过非神经保护机制介导的。我们的数据表明,elf - emf对中风后的功能恢复有影响,这种影响取决于使用的具体频率。这些发现强调了优化方案参数以最大化极低频电磁场有益效果的重要性。进一步的研究是必要的,以阐明潜在的机制和完善方案参数,以获得最佳的治疗效果在卒中康复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Translational Stroke Research
Translational Stroke Research CLINICAL NEUROLOGY-NEUROSCIENCES
CiteScore
13.80
自引率
4.30%
发文量
130
审稿时长
6-12 weeks
期刊介绍: Translational Stroke Research covers basic, translational, and clinical studies. The Journal emphasizes novel approaches to help both to understand clinical phenomenon through basic science tools, and to translate basic science discoveries into the development of new strategies for the prevention, assessment, treatment, and enhancement of central nervous system repair after stroke and other forms of neurotrauma. Translational Stroke Research focuses on translational research and is relevant to both basic scientists and physicians, including but not restricted to neuroscientists, vascular biologists, neurologists, neuroimagers, and neurosurgeons.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信