Cardiorespiratory coupling is associated with exercise capacity in athletes: A cross-sectional study

IF 1.9 4区 医学 Q3 PHYSIOLOGY
Raphael Martins de Abreu , Beatrice Cairo , Patricia Rehder-Santos , Claudio Donisete da Silva , Étore De Favari Signini , Juliana Cristina Milan-Mattos , Camila Akemi Sakaguchi , Aparecida Maria Catai , Alberto Porta
{"title":"Cardiorespiratory coupling is associated with exercise capacity in athletes: A cross-sectional study","authors":"Raphael Martins de Abreu ,&nbsp;Beatrice Cairo ,&nbsp;Patricia Rehder-Santos ,&nbsp;Claudio Donisete da Silva ,&nbsp;Étore De Favari Signini ,&nbsp;Juliana Cristina Milan-Mattos ,&nbsp;Camila Akemi Sakaguchi ,&nbsp;Aparecida Maria Catai ,&nbsp;Alberto Porta","doi":"10.1016/j.resp.2023.104198","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>To determine the association between exercise capacity based on peak oxygen uptake (VO<sub>2peak</sub><span>) and resting cardiorespiratory coupling (CRC) levels in athletes and non-athletes’ subjects.</span></p></div><div><h3>Methods</h3><p><span><span>A cross-sectional study was carried out in 42 apparently healthy male subjects, aged between 20 and 40 years old. The participants were allocated into athletes (n = 21) and non-athletes (n = 21) groups. Resting electrocardiogram and respiratory movement (RESP) were simultaneously acquired during 15 min in </span>supine position and quiet breathing. The beat-to-beat heart period (HP) and RESP series were determined from the recorded signals. Traditional analysis of HP based on frequency domain indexes was performed considering the high-frequency (0.15 – 0.45 Hz) components. To compute the CRC, the linear association between HP and RESP series was determined via squared coherence function and directionality of interaction was investigated through the causal extension of this approach. The exercise capacity was assessed through incremental cardiopulmonary exercise testing in order to determine the VO</span><sub>2peak</sub>.</p></div><div><h3>Results</h3><p>Traditional analysis of HP based on high-frequency index was not correlated with exercise capacity in the athletes (r = −0.1, <em>p</em> = 0.5) and non-athletes (r = −0.1, <em>p</em> = 0.3) cohorts. However, resting CRC values was associated with exercise capacity in athletes (r = 0.4, p = 0.03), but not in the non-athletes group (r = −0.2, <em>p</em> = 0.3).</p></div><div><h3>Conclusion</h3><p>These results suggest that improved resting values of CRC is associated with higher exercise capacity (VO<sub>2peak</sub>) in endurance athletes. Moreover, frequency domain of HP was not sensitive to identifying this relationship, probably because effects of training on parasympathetic modulation might be affected by respiratory dynamics, and this influence has a directionality (i.e., from RESP to HP).</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"320 ","pages":"Article 104198"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Physiology & Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569904823001866","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

To determine the association between exercise capacity based on peak oxygen uptake (VO2peak) and resting cardiorespiratory coupling (CRC) levels in athletes and non-athletes’ subjects.

Methods

A cross-sectional study was carried out in 42 apparently healthy male subjects, aged between 20 and 40 years old. The participants were allocated into athletes (n = 21) and non-athletes (n = 21) groups. Resting electrocardiogram and respiratory movement (RESP) were simultaneously acquired during 15 min in supine position and quiet breathing. The beat-to-beat heart period (HP) and RESP series were determined from the recorded signals. Traditional analysis of HP based on frequency domain indexes was performed considering the high-frequency (0.15 – 0.45 Hz) components. To compute the CRC, the linear association between HP and RESP series was determined via squared coherence function and directionality of interaction was investigated through the causal extension of this approach. The exercise capacity was assessed through incremental cardiopulmonary exercise testing in order to determine the VO2peak.

Results

Traditional analysis of HP based on high-frequency index was not correlated with exercise capacity in the athletes (r = −0.1, p = 0.5) and non-athletes (r = −0.1, p = 0.3) cohorts. However, resting CRC values was associated with exercise capacity in athletes (r = 0.4, p = 0.03), but not in the non-athletes group (r = −0.2, p = 0.3).

Conclusion

These results suggest that improved resting values of CRC is associated with higher exercise capacity (VO2peak) in endurance athletes. Moreover, frequency domain of HP was not sensitive to identifying this relationship, probably because effects of training on parasympathetic modulation might be affected by respiratory dynamics, and this influence has a directionality (i.e., from RESP to HP).

心肺偶联与运动员的运动能力有关:一项横断面研究。
目的:确定运动员和非运动员受试者中基于峰值摄氧量(vo2峰值)的运动能力与静息心肺偶联(CRC)水平之间的关系。方法:对42例20 ~ 40岁表面健康男性进行横断面研究。参与者被分为运动员组(n=21)和非运动员组(n=21)。静息心电图和呼吸运动(RESP)在静息仰卧位和静息呼吸15min时同时采集。根据记录的信号测定心跳周期(HP)和RESP序列。传统的基于频域指标的HP分析是考虑高频(0.15 ~ 0.45Hz)分量。为了计算CRC,通过平方相干函数确定HP和RESP系列之间的线性关联,并通过该方法的因果扩展研究相互作用的方向性。通过增量心肺运动试验评估运动能力,以确定vo2峰值。结果:基于高频指数的传统HP分析在运动员(r = -0.1, p = 0.5)和非运动员(r = -0.1, p = 0.3)队列中与运动能力无关。然而,运动员的静息CRC值与运动能力相关(r = 0.4, p = 0.03),而非运动员组则与此无关(r = -0.2, p = 0.3)。结论:这些结果表明,耐力运动员CRC静息值的改善与更高的运动能力(vo2峰值)有关。此外,HP的频域对识别这种关系并不敏感,可能是因为训练对副交感神经调节的影响可能受到呼吸动力学的影响,并且这种影响具有方向性(即从RESP到HP)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
8.70%
发文量
104
审稿时长
54 days
期刊介绍: Respiratory Physiology & Neurobiology (RESPNB) publishes original articles and invited reviews concerning physiology and pathophysiology of respiration in its broadest sense. Although a special focus is on topics in neurobiology, high quality papers in respiratory molecular and cellular biology are also welcome, as are high-quality papers in traditional areas, such as: -Mechanics of breathing- Gas exchange and acid-base balance- Respiration at rest and exercise- Respiration in unusual conditions, like high or low pressure or changes of temperature, low ambient oxygen- Embryonic and adult respiration- Comparative respiratory physiology. Papers on clinical aspects, original methods, as well as theoretical papers are also considered as long as they foster the understanding of respiratory physiology and pathophysiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信