Kanishk Bhardwaj, Thangaraj Anand, Ritambhra Jangir, Suban K Sahoo
{"title":"Aggregation-Induced Emission Active Benzidine-Pyridoxal Derived Scaffold for Detecting Fe<sup>3+</sup> and pH.","authors":"Kanishk Bhardwaj, Thangaraj Anand, Ritambhra Jangir, Suban K Sahoo","doi":"10.1007/s10895-023-03503-w","DOIUrl":null,"url":null,"abstract":"<p><p>Present work introduces an aggregation-induced emission (AIE) active Schiff base 4,4'-((1E,1'E)-([1,1'-biphenyl]-4,4'-diylbis(azaneylylidene))bis(methaneylylidene))bis(5-(hydroxymethyl)-2-methylpyridin-3-ol) (BNPY). Schiff base BNPY was synthesized by reacting benzidine with pyridoxal. The non-fluorescent BNPY in freely soluble DMSO medium showed a significant fluorescence enhancement at 563 nm (λ<sub>ex</sub> = 400 nm) upon increasing the water fraction (fw) in DMSO above 60% due to the restriction of intramolecular rotation upon the aggregation of BNPY. The AIE active BNPY was employed for the detection of metal ions in DMSO:H<sub>2</sub>O (fw = 70%). Upon the addition of Fe<sup>3+</sup>, the fluorescence emission of BNPY at 563 nm was quenched due to the chelation-enhanced fluorescence quenching (CHEQ). The Job's plot experiment supported the formation of a complex between BNPY and Fe<sup>3+</sup> in 1:2 binding ratio. With an estimated detection limit of 5.6 × 10<sup>-7</sup> M, BNPY was employed to detect and quantify Fe<sup>3+</sup> ion in real water samples with satisfactory recovery percentages. Moreover, the pH studies of BNPY aggregates revealed three different fluorescence windows: non-fluorescent in acidic pH 2.02 to 3.16, yellow fluorescent between pH 3.60 to 9.33, and green fluorescent in basic pH 9.96 to 12.86.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":"2917-2926"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-023-03503-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Present work introduces an aggregation-induced emission (AIE) active Schiff base 4,4'-((1E,1'E)-([1,1'-biphenyl]-4,4'-diylbis(azaneylylidene))bis(methaneylylidene))bis(5-(hydroxymethyl)-2-methylpyridin-3-ol) (BNPY). Schiff base BNPY was synthesized by reacting benzidine with pyridoxal. The non-fluorescent BNPY in freely soluble DMSO medium showed a significant fluorescence enhancement at 563 nm (λex = 400 nm) upon increasing the water fraction (fw) in DMSO above 60% due to the restriction of intramolecular rotation upon the aggregation of BNPY. The AIE active BNPY was employed for the detection of metal ions in DMSO:H2O (fw = 70%). Upon the addition of Fe3+, the fluorescence emission of BNPY at 563 nm was quenched due to the chelation-enhanced fluorescence quenching (CHEQ). The Job's plot experiment supported the formation of a complex between BNPY and Fe3+ in 1:2 binding ratio. With an estimated detection limit of 5.6 × 10-7 M, BNPY was employed to detect and quantify Fe3+ ion in real water samples with satisfactory recovery percentages. Moreover, the pH studies of BNPY aggregates revealed three different fluorescence windows: non-fluorescent in acidic pH 2.02 to 3.16, yellow fluorescent between pH 3.60 to 9.33, and green fluorescent in basic pH 9.96 to 12.86.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.