Does Organizational Messaging Make a Difference? Investigating Themes and Language Style in Twitter Discourse and Engagement by Mental Health Organizations.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
ACS Applied Electronic Materials Pub Date : 2024-01-02 Epub Date: 2024-01-09 DOI:10.1080/10810730.2023.2278609
Rebecca K Britt, Heather J Carmack, Andrew Morris, Ananya Raka Chakraborty, Courtny L Franco
{"title":"Does Organizational Messaging Make a Difference? Investigating Themes and Language Style in Twitter Discourse and Engagement by Mental Health Organizations.","authors":"Rebecca K Britt, Heather J Carmack, Andrew Morris, Ananya Raka Chakraborty, Courtny L Franco","doi":"10.1080/10810730.2023.2278609","DOIUrl":null,"url":null,"abstract":"<p><p>The present study investigated the latent topics and language styles present in mental health organizational discourse on Twitter. The researchers sought to analyze identifying the prevalence of and language used in social support messaging in tweets about mental health care, the overarching topics regarding mental health care, and predicted that tweets with higher engagement will have increased frequency of words with positively valenced emotion and cognitive processing. A GSDMM was run to uncover latent themes that emerged in a data set of 326.9k tweets and 7.2 m words about organizational discussions of mental health. A generalized linear model using the Poisson distribution was used to assess the role of engagement, positive emotion, and cognitive processing. The study found support for both positive emotion and cognitive processing as statistically significant predictors of engagement. Directions for research include the development of health message strategies, policy needs, and online interventions.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10810730.2023.2278609","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The present study investigated the latent topics and language styles present in mental health organizational discourse on Twitter. The researchers sought to analyze identifying the prevalence of and language used in social support messaging in tweets about mental health care, the overarching topics regarding mental health care, and predicted that tweets with higher engagement will have increased frequency of words with positively valenced emotion and cognitive processing. A GSDMM was run to uncover latent themes that emerged in a data set of 326.9k tweets and 7.2 m words about organizational discussions of mental health. A generalized linear model using the Poisson distribution was used to assess the role of engagement, positive emotion, and cognitive processing. The study found support for both positive emotion and cognitive processing as statistically significant predictors of engagement. Directions for research include the development of health message strategies, policy needs, and online interventions.

组织信息传递有影响吗?心理健康组织在推特话语和参与中调查主题和语言风格。
本研究调查了Twitter上心理健康组织话语中的潜在话题和语言风格。研究人员试图分析确定推特中关于精神卫生保健的社会支持信息的流行程度和使用的语言,这是关于精神卫生保健的首要主题,并预测参与度较高的推特将增加具有积极价值的情感和认知处理的单词频率。运行GSDMM是为了发现在关于心理健康的组织讨论的326.9万条推文和720万个单词的数据集中出现的潜在主题。使用泊松分布的广义线性模型来评估参与、积极情绪和认知加工的作用。该研究发现,积极情绪和认知处理都是敬业度的统计显著预测因素。研究方向包括制定卫生信息战略、政策需求和在线干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信