{"title":"Energetics (and Mechanical Determinants) of Sprint and Shuttle Running.","authors":"Paola Zamparo, Andrea Monte, Gaspare Pavei","doi":"10.1055/a-2184-9007","DOIUrl":null,"url":null,"abstract":"<p><p>Unsteady locomotion (e. g., sprints and shuttle runs) requires additional metabolic (and mechanical) energy compared to running at constant speed. In addition, sprints or shuttle runs with relevant speed changes (e. g., with large accelerations and/or decelerations) are typically short in duration and, thus, anaerobic energy sources must be taken into account when computing energy expenditure. In sprint running there is an additional problem due to the objective difficulty in separating the acceleration phase from a (necessary and subsequent) deceleration phase.In this review the studies that report data of energy expenditure during sprints and shuttles (estimated or actually calculated) will be summarized and compared. Furthermore, the (mechanical) determinants of metabolic energy expenditure will be discussed, with a focus on the analogies with and differences from the energetics/mechanics of constant-speed linear running.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2184-9007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Unsteady locomotion (e. g., sprints and shuttle runs) requires additional metabolic (and mechanical) energy compared to running at constant speed. In addition, sprints or shuttle runs with relevant speed changes (e. g., with large accelerations and/or decelerations) are typically short in duration and, thus, anaerobic energy sources must be taken into account when computing energy expenditure. In sprint running there is an additional problem due to the objective difficulty in separating the acceleration phase from a (necessary and subsequent) deceleration phase.In this review the studies that report data of energy expenditure during sprints and shuttles (estimated or actually calculated) will be summarized and compared. Furthermore, the (mechanical) determinants of metabolic energy expenditure will be discussed, with a focus on the analogies with and differences from the energetics/mechanics of constant-speed linear running.